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Chapter 1

Introduction

1.1 Definition of co-orbital motion
In order to provide a definition of co-orbital motion, we say that two planets are co-
orbital if the difference of their mean longitude is a librating angle. More precisely, if
λ1 and λ2 denote the mean longitudes of two planets of a planetary system, defining
ξ(t) = λ1(t) − λ2(t), these two planets are co-orbital if1

∀t ∈ R ξ(t) mod 2π ∈ ]0, 2π[ , (1.1)

where the variable t is the time. In the framework of the three-body problem, co-orbital
planets are in a 1 : 1 mean motion resonance. The difference ξ of their mean longitudes
generally librates around a value close to ±π/3 or equal to π. Beyond the famous collinear
and equilateral configurations described respectively by Euler (1764) and Lagrange (1772),
other types of orbits are possible in this resonance, making the co-orbital dynamics
very rich. While the Euler configurations, denoted by L1, L2 and L3 in the restricted
three-body problem, are unstable for all mass ranges, the Lagrangian equilibria are linearly
stable, provided that the three masses satisfy the relation 27(m0m1 + m0m2 + m1m2) <
(m0 + m1 + m2)2 established by Gascheau (1843) for circular orbits. If we denote by m0
the mass of the star, much larger than that of the planets m1 and m2, the Gascheau
condition is satisfied when (m1 + m2)/m0 ≲ 1/27.

Therefore, in the planar case and for small eccentricities, when the sum of the planetary
masses is smaller than about 1/27 of the stellar mass, tadpole orbits arise, allowing the
difference in the mean longitude to librate around ±60◦. When (m1 + m2)/m0 ≲ 3 × 10−4,
horseshoe-shaped orbits can arise (Laughlin and Chambers, 2002). They librate around
180◦ with a very large amplitude of at least 312◦. For small libration amplitudes, still
in the planar case, the eccentric dynamics have been studied numerically by Giuppone
et al. (2010) and analytically by Robutel and Pousse (2013), showing the existence of two
proper modes called Lagrange and anti-Lagrange. For moderate to large eccentricities,
quasi-satellite orbits are also possible, for which the planets appear to revolve around

1This definition excludes the quasi-satellite motion, that we do not study in this manuscript.
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2 Chapter 1. Introduction

each other (Giuppone et al., 2010; Pousse et al., 2017). High eccentricities give rise to
topological changes in the phase space, and thus to many more exotic trajectories (Leleu
et al., 2018), while the dynamics of the inclined problem is even more complex by allowing,
among other things, transitions between these orbits and retrograde co-orbital motion
(Namouni, 1999).

1.2 State of the art on co-orbital planets detection
An exoplanet is a planet orbiting a star other than the Sun. It is generally estimated that
the Milky Way contains 1011 to 1012 planets, and all of them but eight are exoplanets.
The era of exoplanet detection started 27 years ago, and as of August 26th, 2022, 5154
were discovered2, none co-orbital with another. Before reviewing the methods specifically
used for the detection of hypothetical co-orbital exoplanets, we will focus on the detection
of regular exoplanets.

Most exoplanets are located more than 10 light-years away from the Sun (only 8 out
of 5154 are closer than that3), and most exoplanets have a radius less than that of Jupiter
(63 % of the 5154 are smaller than Jupiter2). It is likely that the proportion of exoplanets
smaller than Jupiter is higher than 63 %, but the detection is naturally biased towards
larger exoplanets. Similarly, it is obvious that the proportion of exoplanets closer than 10
light-years is much smaller than 8/5154, since once again, the detection is strongly biased
towards closer exoplanets. As a consequence, only a small minority of all exoplanets
have an angular diameter larger than 0.3 milliarcseconds. Taking into account the small
angular separation between the exoplanet and its host star, the feat of a direct detection
is generally excluded, since the best-case scenario is equivalent to observe a fly circling a
street light 14 800 km away4.

As exoplanets can hardly be detected directly, their existence is generally highlighted
from various kinds of perturbations they cause on their host star. If the exoplanet orbits
its star in a plane almost parallel to our line of sight, then the luminosity of the star
slightly decreases periodically due to eclipses caused by the planet passing in front of the
star, called transits. When the radius of the planet is not too small with respect to that
of the star, the S/N (signal over noise) ratio is high enough for the transit to be detected.
The transit method gives the orbital period of the exoplanet with a good precision, and
if the radius of the star is constrained, then that of the planet is estimated from the
decrease in luminosity. Similarly, if the mass of the host star can be estimated, then the
semimajor axis of the planet is deduced from Kepler’s third law. However, the eccentricity
and argument of pericentre generally cannot be constrained, unless the secondary eclipse,
that occurs when the star passes in front of the planet, can be distinguished from the
noise. The secondary eclipse is rarely detected though and only some tens of exoplanets
are concerned. Some examples are given in Table A.3 of Lillo-Box et al. (2018).

Regardless of the ratio S/N, the transit method is bound to fail if the exoplanet
orbits its star in a plane even slightly inclined with respect to our line of sight. In
presence of an exoplanet, the star orbits the barycentre of the system star−exoplanet

2exoplanet.eu
3Namely, Proxima Centauri b,c,d; Wolf 359 b,c & Lalande 21185 b,c.
41 cm/14 800 km = 140 000 km/10 ly

www.exoplanet.eu
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periodically, and analyzing the radial velocity of the star can highlight the existence of an
exoplanet. The main advantage of the radial velocity method is that it does not require
the exoplanet to eclipse its host star . If the star is orbited by several exoplanets, its
motion around the barycentre of the planetary system is quasiperiodic instead of periodic,
and the radial velocity method is more adapted than the transit method to the detection
of multi-planetary systems, as it can show the quasiperiodic motion of the star, and most
planets of a planetary system might not transit. The amplitude of the motion of the
star is related both to the mass m of the exoplanet and i, the inclination between its
orbital plane and the plane of the sky. As a consequence, the method only allows the
product m sin i to be constrained, but does not give these two quantities independently.
Nevertheless, if the exoplanet detected with the radial velocity method happens to transit,
then i = π/2 and its mass can be obtained. Contrarily to the transit method, the radial
velocity method does not give constraints on the radius of the planet.

Some other techniques, still under development, can enable the detection of exoplanets,
but transit and radial velocity are the two most successful. Both methods are a priori valid
for the detection of co-orbital exoplanets, but difficulties inherent to the co-orbital motion
arise. The transit method shows the presence of a co-orbital pair if both co-orbitals transit,
but in case of moderate to large semimajor axes, even a tiny mutual inclination between
the co-orbitals ensures that one of them passes above or below the star, and escapes
detection. Because of the large orbital period induced by large semimajor axes, the transit
method seems poorly adapted to detect pairs of co-orbital exoplanets with moderate to
large semimajor axes. Small semimajor axes can allow both transits to happen despite
a small mutual inclination, but as we investigate in this manuscript, close-in co-orbital
pairs are subject to strong tidal dissipation that can disrupt the system.

For these reasons, the radial velocity technique seems more adapted than the transit
method to locate co-orbital exoplanets. However, Leleu et al. (2017) have shown that at
first order in eccentricity, a pair of co-orbital exoplanets yields the same radial velocity
signature as a single exoplanet with well chosen parameters. In practice, it is hence very
difficult to distinguish a pair of co-orbital exoplanets from a single exoplanet using only
the radial velocity method. If both co-orbital exoplanets of masses m1 and m2 are at an
equilateral Lagrangian equilibria, then they provoke the same perturbations on the radial
velocity of the star as a single exoplanet of mass m located in front of m2 by an angle φ
(resp. behind m1 by an angle π/3 − φ), where (Leleu et al., 2017, Eq. (9))

m =
√

m2
1 + m2

2 + m1m2 and φ = arctan
√

3 m1

m1 + 2 m2
. (1.2)

As a consequence, it is impossible to differentiate the two black co-orbital exoplanets
from their fictitious blue equivalent on Fig. 1.1 with the radial velocity method.

By themselves, the transit and radial velocity techniques are rather helpless on detecting
co-orbital exoplanets. Combining both can nevertheless help the detection. Indeed, in
the case of a single exoplanet, the transit occurs at the same time as the radial velocity
reaches its mean value. In the co-orbital case though, there exists a time-shift ∆t between
these two events. The time ∆t depends on the angular separation ξ = λ1 − λ2 between
the co-orbitals, and denoting η their common mean-motion, it reads (Ford and Gaudi,
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Fig. 1.1 — The two black co-orbital exoplanets of masses m1 and m2, located at an equilateral
Lagrangian equilibrium, yield on the radial velocity of the central star the same signature as
the fictitious blue exoplanet. Analyzing the radial velocity of the star is thus not enough to
highlight the presence of the two distinct exoplanets. If m1 = m2 = m, then the blue exoplanet
of mass

√
3 m is at mid-distance between the co-orbitals.

2006; Leleu et al., 2017)

∆t = η−1
(

ξ

2 + arctan
[

m1 − m2

m1 + m2
tan ξ

2

])
. (1.3)

If one of the co-orbital exoplanets transits, analyzing the radial velocity of the star can
highlight the presence of its companion, even if it does not transit, if such a time-shift
is measured. However, even a single exoplanet features a time-shift ∆t = −η−1e cos ω
as soon as it is eccentric with eccentricity e and argument of pericentre ω. Unless the
quantity e cos ω can be constrained by means of the secondary eclipse, the time-shift
method is useless on detecting co-orbital exoplanets.

When the star is orbited by a single exoplanet, transits occur periodically and plotting
the light curve as a function of time, with a fold at every period T = 2π/η, draws a vertical
line, corresponding to the luminosity decrease. If the lines of pixels of the subsequent
image are added, the transiting exoplanet can be detected even with a poor S/N ratio. In
the case of a multi-planetary system though, the motion of each exoplanet is no longer
periodic and planet−planet gravitational interactions are responsible for transit timing
variations (TTV). In the presence of TTV, the line corresponding to the luminosity
decrease is no longer straight but can curve according to the TTV value, giving it a river
shape such as the one presented in Fig. 2 of Leleu et al. (2021). The rivers caused by
the TTV induced by a co-orbital companion are very characteristic (Vokrouhlický and
Nesvorný, 2014, Fig. 3) and their observation would be enough to prove the existence
of a co-orbital pair. Nevertheless, in presence of large TTV, adding the lines of the
river diagram does not improve the S/N ratio, and such method is not suitable to detect
co-orbital exoplanets. Recently, neural networks have been shown capable of efficiently
detect exoplanets in river diagrams with high TTV and low S/N (Leleu et al., 2021; Leleu
et al., 2022) and could yield to the detection of a co-orbital pair of exoplanets in the
future.
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1.3 State of the art on co-orbital planets formation

The discovery of exoplanets raised the question of the existence of co-orbital planets,
which are absent from the Solar System. Despite the large number of exoplanet detection,
no pair or co-orbital exoplanet has been discovered so far. However, the theories of
planetary formation do not prohibit the existence of co-orbital planets. Indeed, Laughlin
and Chambers (2002) introduced two possible processes that can form such systems :
accretion in situ or capture at a stable Lagrangian point of an already existing planet.
Depending on the physical characteristics of the gas disc, the capturing process can lead
to systems with a high diversity of mass ratios (Cresswell and Nelson, 2008), but also to
equal-mass co-orbitals (Giuppone et al., 2012). In the in-situ scenario, different models
lead to various upper limits for the mass that can form at a Lagrangian equilibrium of
a giant planet. A maximum of about 0.6 Earth mass is found by Beaugé et al. (2007),
while Lyra et al. (2009) obtain 5 to 15 Earth mass planets at the same location.

Once formed in the disc, the stability of the co-orbital system is not necessarily
guaranteed. Beaugé et al. (2007) found that inward migration tends to slightly increase
the libration amplitude of the co-orbital system, and instability during the late migrating
stages with low gas friction may lead to the destruction of the system. Another study from
Pierens and Raymond (2014) shows that equal-mass co-orbitals (from super-Earths to
Saturns) are heavily disturbed during the gap-opening phase of their evolution. Leleu et al.
(2019) studied the dynamics of a pair of migrating co-orbital planets and showed that,
depending on the mass ratio, the eccentricities of the planets and the type of dissipative
forces, the two planets may evolve towards the stable Lagrangian points or scatter out of
the system. In the same work, Leleu et al. (2019) studied the formation of exoplanets
around low mass star. They showed that when co-orbital pairs of exoplanets are formed,
they are often part of a chain of mean motion resonance (see their Fig. 12)

1.4 Tidal effects and motivations

For systems with orbital periods less than 10 days, the planets undergo strong tidal
interactions from the parent star (e.g. Correia et al., 2020), which arise from differential
and inelastic deformations of the planet. In the two-body problem, the ultimate stage for
tidal evolution is the synchronization of the rotational and orbital periods, alignment of
the planet spin axis with the normal to the orbit, and circularization of the orbit (e.g.
Hut, 1980; Adams and Bloch, 2015).

In the full N -body problem, Moeckel (2017) proved that a relative equilibrium (solid
rotation of the whole configuration) is never a minimum of energy of the phase space
at a given total angular momentum. Thus, applied to the three-body problem with
tidal dissipation, this result implies that the Lagrangian equilibria are made unstable by
tides. However, we know neither the timescale of such instability nor if the phenomenon
expands to the whole phase space, and we even less know what are the consequences to
the dynamics of the co-orbital configuration. Indeed, although the spin of close-in planets
quickly evolves into an equilibrium configuration, the orbital evolution is much slower
(e.g. Correia and Laskar, 2010), and the co-orbital configuration may survive the whole
age of the system.
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The absence of co-orbital exoplanet detection could be explained by the challenge that
such detection represents, as we justified in Sect. 1.2. Nevertheless, in this manuscript, we
rather investigate the hypothesis that tidal effects are responsible for the disruption of the
co-orbital motion. Rodríguez et al. (2013) provided a numerical study of the co-orbital
motion under tidal dissipation and showed that identical co-orbitals (same masses, radii
and tidal parameters) are always destroyed by tides, but before Couturier et al. (2021),
no analytical work had been undertaken to investigate this hypothesis. Resonance chains
are at the core of current researches in celestial mechanics, and since formation models
predict that co-orbital planets are often formed within one, we investigate the behaviour
and stability of the co-orbital motion as part of a resonance chain.

1.5 Organization of the manuscript and notations

In this thesis manuscript, we provide an in-depth study of the co-orbital motion, perturbed
by tides and resonance chains. The different models that we elaborate take into account
effects such as the gravitational interactions between the co-orbital bodies, dissipation
due to tides, secular (i.e. long-term) perturbations due to interactions with a third planet,
and general relativity. The main secular effect that we are interested in is tidal dissipation.
Indeed, tides do not preserve the total energy of the system and have a high potential for
long-term modifications of the orbits. However, it is important that the point-mass (i.e.
tideless) dynamics are well described and understood before we can properly introduce
tidal dissipation. For this reason, we do not treat the case of tides before Chap. 5. In the
whole manuscript, we restrict ourselves to the planar case.

The theoretical work that we perform throughout the manuscript is often analytical
and sometimes semi-analytical. Numerical simulations are generally bounded to the
verification of the analytical results and their domain of validity. Our work makes use of
the general theory on celestial mechanics and dynamical and Hamiltonian systems. In
Chap. 2, we expose the main parts of this theory, and we rederive some important results
that we frequently use later in the manuscript. For convenience to the reader, we gather
in Table 1.1 the notations used throughout the manuscript.

In Chap. 3, we study the dynamics of two point-mass co-orbital bodies affected by
their gravitational interaction with the central body, and perturbed by their mutual
interaction, that is, we study the 1 : 1 mean-motion resonance. Most results of Chap. 3
were first published in Robutel and Pousse (2013) and are recalled in Sect. 2 of Couturier
et al. (2021). The end of Sect. 3.2.2 was first published in Couturier et al. (2021) and
Sect. 3.3, where we study the perturbations due to general relativity on the co-orbital
motion, is original.

Since it is not uncommon for exoplanets to be formed within a resonance chain, we
expand our work in Chap. 4 by considering the case where the pair of co-orbital planets
interacts with an outer third planet, in a first-order mean-motion resonance with the pair.
In other words, we study the point-mass resonance chain p : p : p + 1, where p is a small
integer. The results of Chap. 4 were first published in Couturier et al. (2022).

The theory of tidal dissipation could be the scope of an entire thesis manuscript, and
before we introduce tides in Chaps. 6 & 7, we dedicate Chap. 5 to the main theory on
tidal dissipation. We redefine there some tidal parameters that the literature often makes
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use of, namely, the Love numbers and the quality factor. We also give some examples of
rheologies and their associated tidal models. In order to include tides in our model as
smoothly as possible, we explain in Sect. 5.3 how a pseudo-Hamiltonian formalism can be
developed that allows the equations of motion with tides to be derived from the Hamilton
equations.

In Chaps. 6 & 7, we include tidal dissipation to the co-orbital 1 : 1 mean-motion
resonance, and to the p : p : p + 1 resonance chain, respectively. We prove in Chap. 6
that the co-orbital motion is made unstable by tides, but that the third planet in the
chain p : p : p + 1 often makes the co-orbital pair much more stable. We give analytical
expressions of the co-orbital lifetime depending on the parameters of the system. Our
work is the first analytical proof of the instability of the Lagrangian equilibria under tides,
and the results of Chap. 6 were published in Couturier et al. (2021), while those of Chap.
7 were published in Couturier et al. (2022). Section 6.4 treats the case of tides raised on
the central body and is not yet published.
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Notation Definition Notation Definition Notation Definition
t· transposition bold vector t time

˙ d/dt ◦ composition ∇f Eq. (2.2)
∇F Eq. (2.4) ∇2f Eq. (2.5) L Lagrangian
H Hamiltonian G grav. constant mj mass
q coordinates p momenta I Identity matrix
J Eq. (2.19) ΦH flow of H (2.23) βj m0mj/(m0+mj)
µj G (m0 + mj) ϖj long. of periapsis ej eccentricity
aj semimajor axis λj mean longitude Λj (2.49) & (4.10)
Dj (2.49) & (4.10) xj Eq. (2.50) Xj

√
2/Λj xj

ι (m1 + m2) /m0 Lχ Eq. (2.64) {χ,·} Lχ

Re real part Im imaginary part ϛ Eq. (3.7)
ā Eq. (3.5) η Eq. (3.5) Λ⋆

j (3.6) & (4.5)
ξ λ1 − λ2 δ Eq. (3.14) δ Eq. (4.34)
J (3.18) & (3.20) J2 (3.18) & (3.20) Rj Eq. (3.20)
fj Eq. (3.21) m

√
m1m2 ∆

√
2 − 2 cos ξ

Ah Eq. (3.30) Bh Eq. (3.30) ν Eq. (3.32)
g1 Eq. (3.42) g2 Eq. (3.42) c speed of light
n

(0)
j Eq. (4.4) ξ2,3 Eq. (4.7) σj Eq. (4.7)

L,G,Γ below Eq. (4.7) Γ⋆ Eq. (4.9) Cj Eq. (4.14)
p small integer C(n)

p,m Append. (B.2) F0 below Eq. (4.21)
ν2 Eq. (4.24) ν3 Eq. (4.30) ∆G Eq. (4.35)
B perturbed body W perturbing pot. V perturbed pot.
ζ Eq. (5.16) klm Love number h Eq. (5.16)
µ shear modulus ρ density g surface gravity
κ2 Eq. (5.36) Q Sect. 5.2.4 ∆t time lag
·⋆ Eq. (6.5) Rj radius ∆ς ς − ς⋆

ϙj (6.7) & (7.2) qj κ
(j)
2 ϙ

5
j Ω q1/Q1 + q2/Q2

Cj mom. of inertia αj Cj/
(
mjR

2
j

)
ϑj Eq. (6.14)

A
(j)
t Eq. (6.10) B

(j)
t Eq. (6.10) C

(j)
t Eq. (6.10)

ϡj Eq. (6.28) λ Eq. (6.28) λL Eq. (6.28)
λAL Eq. (6.28) τL Eq. (6.29) τAL Eq. (6.29)
x m1/m2 y q2Q1/ (q1Q2) τlib Eq. (6.35)
∆ξ above Eq. (6.37) τhs Eq. (6.40) M⊕ Earth mass
M⊙ Solar mass R⊕ Earth radius ℵq

p Eq. (6.59)
ϡ Eq. (6.61) āc Eq. (6.62) ās Eq. (6.63)
F Sect. 7.1.2 ωj below Eq. (7.8) δ0 δ(t = 0)

Table 1.1 — List of the notations used in this manuscript, ordered roughly by first apparition.
A subscripted j means of body number j. Notations used right after their definition only are
not included here. There exists a conflict of notation between δ defined by Eq. (3.14) and δ
defined by Eq. (4.34). The conflict does not exist within a same chapter and we believe that no
confusion is possible. ϛ (varstigma), ϙ (qoppa) and ϡ (sampi) are archaic Greek letters.



Chapter 2

Main theory on celestial mechanics and
dynamical systems

This chapter establishes the main mathematical framework on celestial mechanics and
dynamical systems, that we use throughout the rest of this manuscript.

2.1 Framework

We consider for this chapter a system of n + 1 point masses mj (0 ≤ j ≤ n), moving
under the effect of their mutual gravitational interactions. Their positions and speeds
in an inertial reference frame are given by rj and ṙj , respectively. In this manuscript, t·
denotes the transpose operator and an upper dot denotes d/dt. If p is an integer and f a
differentiable scalar field

f : Rp → R
t (x1, · · · , xp) 7→ f( t (x1, · · · , xp)),

(2.1)

then ∇f : Rp → Rp is defined as

∇f = t

(
∂f

∂x1
, · · · ,

∂f

∂xp

)
. (2.2)

Writing x for t (x1, · · · , xp), we will also use the notation ∇f = ∂f/∂x. If xk represents
the subvector t (x1, · · · , xk), where k ≤ p, then ∇xk

f : Rp → Rk is defined as

∇xk
f = t

(
∂f

∂x1
, · · · ,

∂f

∂xk

)
, (2.3)

and once again, we will use the notation ∇xk
f = ∂f/∂xk. If F : Rp → Rp denotes a

differentiable vector field, then, writing F = (F1, · · · , Fp), where the Fi are scalar fields

9
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like in Eq. (2.1), the notation ∇F is the Jacobian matrix of F

∇F =



∂F1

∂x1
· · · ∂F1

∂xp
... ...

∂Fp

∂x1
· · · ∂Fp

∂xp

 . (2.4)

Finally, if f is twice differentiable, we denote ∇2f the Hessian matrix of f , that is

∇2f =



∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xp
... ...

∂2f

∂xp∂x1
· · · ∂2f

∂xp∂xp

 . (2.5)

2.1.1 Lagrangian formalism
We denote q = t (r0, ..., rn) and q̇ = t (ṙ0, ..., ṙn). The Lagrangian of the system is
defined as L = T − U , where T and U are the kinetic and potential energies, respectively.
They read

T =
n∑

j=0

1
2mj ṙj · ṙj and U = −

n∑
i=0

n∑
j=i+1

Gmimj

|ri − rj|
, (2.6)

where G is the gravitational constant. We define x = t (q, q̇). The state x(t) of the system
at time t is given by a point in R6n+6, and its evolution from t = t0 to t = t1 is a path

γ : [t0, t1] → R6n+6

t 7→ x(t).
(2.7)

The action S(γ) of the path γ is defined as

S(γ) =
∫ t1

t0
L(q, q̇)dt, (2.8)

and, according to the least action principle, the path actually followed by the system
extremizes S, that is

δS
δγ

(h) := lim
ε→0

S(γ + εh) − S(γ)
ε

= 0, (2.9)

for every loop h : [t0, t1] → R6n+6 such that h(t0) = h(t1) = 0. Writing h =
(
h, ḣ

)
∈

([t0, t1] → R3n+3)2, we obtain

δS
δγ

(h) =
∫ t1

t0

∂L
∂q

· h(t) + ∂L
∂q̇

· ḣ(t) dt, (2.10)

and taking advantage of h(t0) = h(t1) = 0, an integration by part yields

δS
δγ

(h) =
∫ t1

t0

(
∂L
∂q

− d

dt

∂L
∂q̇

)
· h(t) dt = 0. (2.11)
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Since Eq. (2.11) is verified for any choice of the loop h, the least action principle is
equivalent to the Euler-Lagrange equation

∂L
∂q

− d

dt

∂L
∂q̇

= 0. (2.12)

Substituting Eq. (2.6) into Eq. (2.12) yields Newton’s law of gravitation

r̈k = −
∑
j ̸=k

Gmj

|rk − rj|3
(rk − rj) , (2.13)

but the Euler-Lagrange equation applies to many domains. As an example, the equation
of geodesics in general relativity can be retrieved from Eq. (2.12) using1 L = tugu, where
g is the spacetime metric.

2.1.2 Hamiltonian formalism
Given a Lagrangian L(q, q̇), the generalized momenta pj are defined as

p = t (p0, ..., pn) = ∂L
∂q̇

, (2.14)

while the Hamiltonian H is given by the Legendre transformation

H = p · q̇ − L. (2.15)

Substituting Eq. (2.14) into the differential of Eq. (2.15) yields

dH = q̇ · dp − ∂L
∂q

· dq, (2.16)

showing that H(p, q) depends only on p and q, and giving

q̇ = ∂H
∂p

and ∂H
∂q

= −∂L
∂q

. (2.17)

Combining together Eqs. (2.12), (2.14) & (2.17), we obtain the Hamilton equations

q̇ = ∂H
∂p

and ṗ = −∂H
∂q

. (2.18)

The vector X = t (p, q) belongs to a 6 (n + 1) dimensional space, called phase space of
the system. The number of degrees of freedom of the system, that we denote N , is defined
as half the dimension of the phase space. The Hamilton equations are often written under
the compact form

Ẋ = J∇H(X) =
(

0 −IN

IN 0

)(
∂H/∂p
∂H/∂q

)
. (2.19)

1with u = t
(

dt
dτ , dx

dτ , dy
dτ , dz

dτ

)
, τ the proper time and d/dτ instead of d/dt in Eq. (2.12).
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2.1.3 Canonical transformation
When studying the dynamics of a planetary system, arbitrary changes of variables do not
preserve, a priori, the form of the Hamilton equations. A transformation

Ψ : R2N → R2N

X 7→ Y
(2.20)

is said to be canonical if it verifies

Ẋ = J∇H(X) ⇒ Ẏ = J∇H̃(Y ), (2.21)

where H̃ = H ◦ Ψ−1. That is, Ψ is canonical if it preserves the form of Eqs. (2.18). We
denote M = ∇Ψ = (∂Yi/∂Xj)1≤i,j≤2N the Jacobian matrix of Ψ. Verifying that Ẏ = MẊ
and ∇H(X) = tM∇H̃(Y ), and combining with Eq. (2.19), we obtain

Ẏ = MJ tM∇H̃(Y ). (2.22)

A matrix Q is said to be symplectic if2 QJ tQ = J. As a consequence, a transformation is
canonical if, and only if, its Jacobian is symplectic.

The flow of H(X) is defined as the application

ΦH : R × R2N → R2N

(t, X0) 7→ X(t),
(2.23)

where X(t) is the unique solution to the Cauchy problem Ẋ = J∇H(X) with initial
condition X(0) = X0. We can give a sufficient condition of canonicity using the notion of
flow. A transformation Ψ : R2N → R2N is canonical if there exists a scalar t ∈ R and a
Hamiltonian χ : R2N → R, called generator of Ψ, such that (Morbidelli, 2002, Sect. 1.6)

Ψ = Φχ(t, ·). (2.24)

This result can be proven in two steps :

• We first prove that the Jacobian matrix M(t) = ∇Φχ(t, X) of the transformation
verifies the differential equation Ṁ = JSM, where S is a symmetrical matrix.

• We then prove that M is symplectic, which ends the demonstration, since we already
proved that a transformation is canonical if, and only if, its Jacobian is symplectic.

First step

The new set of variables Y (t) = Ψ(X(t)) = Φχ(t, X) is given by the flow of χ, thus we
have

d

dt
Φχ(t, X) = J∇χ(Φχ(t, X)). (2.25)

If we evaluate Eq. (2.25) at X + dX, where dX is a small displacement of the initial
condition, a first-order Taylor expansion gives

d

dt

(
Φχ(t, X) + M(t)dX

)
= J∇χ

(
Φχ(t, X) + M(t)dX

)
. (2.26)

2Or equivalently, if tQJQ = J, since J2 = −I2N .
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Another Taylor expansion in the right-hand side yields Ṁ(t)dX = JS(t)M(t)dX, where

S(t) = ∇2χ (Φχ(t, X)) (2.27)

is the Hessian of χ (Eq. (2.5)), evaluated at Φχ(t, X), which is a symmetrical matrix.
This last equation being valid for any value of dX, we obtain

Ṁ(t) = JS(t)M(t). (2.28)

Second step

The condition stating that M is symplectic is tMJM = J. We have

d

dt

(
tMJM

)
= tṀJM + tMJṀ = tM

(
tS tJJ + J2S

)
M = 0, (2.29)

where we used Eq. (2.28) for the second equality and tJJ = I = −J2 for the third one.
Integrating both sides of Eq. (2.29) with respect to time and using M(0) = I, we obtain

tMJM = J, (2.30)

and M(t) is symplectic, and X 7→ Φχ(t, X) is canonical.

This sufficient condition for canonicity will be very useful in Sect. 2.2.2, where we
introduce Lie series. We can give another sufficient condition for canonicity, very useful in
practice. If Ψ : R2N 7→ R2N is linear and takes the form

Ψ :
(

p
q

)
7→
(

A 0
0 tA−1

)(
p
q

)
= ∇Ψ

(
p
q

)
, (2.31)

where A is any N × N non-degenerate matrix, then it is canonical. This is readily seen
by checking that the Jacobian ∇Ψ is symplectic. We end this section by showing that a
Hamiltonian H(p, q) is conserved along its own flow. Indeed, we have

dH
dt

= ∂H
∂p

· ṗ + ∂H
∂q

· q̇ = q̇ · ṗ − ṗ · q̇ = 0. (2.32)

2.1.4 Two-body problem & Poincaré variables

The two-body problem

Combining Eqs. (2.6), (2.14) & (2.15), the Hamiltonian of the two-body problem can be
written

H2BP (p, q) = p0 · p0

2m0
+ p1 · p1

2m1
− Gm0m1

|q0 − q1|
. (2.33)

This Hamiltonian has 6 degrees of freedom, and 3 of them can be eliminated by performing
the canonical3 transformation

(q0, q1; p0, p1) 7→ (r0, r; r̃0, r̃) = (q0, q1 − q0; p0 + p1, p1) . (2.34)
3It has the form (2.31).
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The new Hamiltonian does not depend on r0, and given Eqs. (2.18), this means that
r̃0 = p0 + p1 is constant. Terms depending only on r̃0 can therefore be removed from the
Hamiltonian, since their gradient is zero. We obtain

H2BP (r̃, r) = r̃2

2β
− r̃0 · r̃

m0
− Gm0m1

r
, (2.35)

where β = m0m1/ (m0 + m1). The Hamiltonian can be further simplified by the transla-
tion4 r̂ = r̃ − βr̃0/m0. This yields

H2BP (r̂, r) = r̂2

2β
− Gm0m1

r
. (2.36)

The Hamiltonian H2BP in Eq. (2.36) still has 3 degrees of freedom, but we can additionally
eliminate two of them. We first notice that the angular momentum G = r × r̂ is conserved

dG

dt
= ṙ × r̂ + r × dr̂

dt
= 1

β
r̂ × r̂ − Gm0m1

r3 r × r = 0. (2.37)

By definition of the cross product, G is perpendicular to both r and r̂. As a consequence,
the motion occurs in a plane perpendicular to G containing the origin, and the Hamiltonian
H2BP is thus reduced to two degrees of freedom. We write

r = t (u, v) and r̂ = t (û, v̂) , (2.38)

where u and v (resp. û and v̂) are the cartesian coordinates of r (resp. r̂) in the orbital
plane. The transformation to the polar coordinates (u, v; û, v̂) 7→ (r, φ; r̃, Φ), where

u = r cos φ, v = r sin φ; r̃ = uû + vv̂

r
and Φ = uv̂ − vû, (2.39)

is canonical (Meyer and Hall, 2009, Sect. 7.4). By definition of the cross product, Φ is
the norm of the total angular momentum

Φ = |r × r̂| = |G| = G. (2.40)

Since G = Φ is conserved, the Hamiltonian H2BP (Eq. (2.36)) in the new coordinates
does not depend on φ and reads

H2BP (r̃, r) = 1
2β

(
r̃2 + G2

r2

)
− Gm0m1

r
. (2.41)

We are reduced to one degree of freedom. The canonical coordinates (r, φ; r̃, G), where φ
is the true anomaly, are the Hill coordinates (Hill, 1913; Laskar, 2017).

4The Jacobian is identity, and the identity is symplectic, so it is a canonical transformation.
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Poincaré variables

The form of Hamilton Eqs. (2.18) shows that the flow of a Hamiltonian H = H(p)
depending only on the momenta is trivial. It is given by

p(t) = p(0) and q(t) = q(0) + tω0 = q(0) + t
∂H
∂p

. (2.42)

We now transform the Hamiltonian of the two-body problem so that it only depends on
the momentum. We know since Newton that the orbit is a conic5

r(φ) = a (1 − e) (1 + e)
1 + e cos φ

, (2.43)

where a is the semimajor axis of the conic and e its eccentricity. At the periapsis (φ = 0)
and apoapsis (φ = π), the value of r is

rp = a (1 − e) and ra = a (1 + e) . (2.44)

Furthermore, at these points in the trajectory, r reaches an extremum and r̃ = βṙ is zero.
The conservation of the Hamiltonian along the trajectory (Eq. (2.32)) allows us to write
H2BP (0, rp) = H2BP (0, ra), which yields

G = β
√

µa (1 − e2), where µ = G (m0 + m1) . (2.45)

Evaluating the Hamiltonian at the periapsis, or at the apoapsis, gives

H2BP (a) = −µβ

2a
, (2.46)

and H2BP depends only on a. However, the transformation to the elliptic elements
(r̂; r) 7→ (a, e, i; M, ω, Ω), where M is the mean anomaly6, i the inclination of the orbit,
ω the argument of the pericentre and Ω the longitude of the ascending node, is not
canonical. Delaunay (1861) & Andoyer (1923) solve the problem by introducing the
canonical transformation (r̂; r) 7→ (L, G, H; M, ω, Ω), where Delaunay variables read

Λ = β
√

µa M,

G = β
√

µa (1 − e2) ω,

H = G cos i Ω.

(2.47)

See Laskar (2017) for a proof of canonicity. In Delaunay coordinates, the Hamiltonian
takes the expression

H2BP (Λ) = −µ2β3

2Λ2 . (2.48)

This Hamiltonian has one degree of freedom and depends only on the momenta. All the
Delaunay coordinates are thus constant, except M(t) = nt = t∂H2BP /∂Λ = µ2β3t/Λ3

which evolves linearly with time. To avoid the equality of momenta when either e or i

5This comes from the conservation of the eccentricity vector e = (m0 + m1) r̂ × G/
(
Gm2

0m2
1
)

− r/r.
6Defined as M(t) = 2πt/T , where T is the period of the orbit.



16 Chapter 2. Main theory on celestial mechanics and dynamical systems

is zero, we introduce Poincaré polar coordinates through a canonical linear change of
variable of the form (2.31)

Λ = β
√

µa λ = M + ϖ,

D = Λ − G = Λ
(
1 −

√
1 − e2

)
−ϖ = −ω − Ω,

℧ = G − H = G (1 − cos i) −Ω,

(2.49)

where λ and ϖ are the mean longitude and longitude of the pericentre, respectively. In
the rest of this manuscript, we only consider the planar case, and we do not use the
variables ℧ and Ω. We can also adopt complex Poincaré variables with the canonical
transformation

(D; −ϖ) 7→
(
x =

√
D exp(iϖ); −ix̄

)
, (2.50)

where the upper bar denotes the complex conjugated. In Chap. 3, we start from Poincaré
complex variables, while we rather use the polar Poincaré variables in Chap. 4.

2.2 The (n + 1)-body problem

2.2.1 Decomposition of the Hamiltonian
We combine Eqs (2.6), (2.14) & (2.15) to give the Hamiltonian of the (n+1)-body problem
under the form

H(ũ, u) =
n∑

j=0

ũj · ũj

2mj

−
n∑

j=0

n∑
i=j+1

Gmimj

|ui − uj|
. (2.51)

As for the two-body problem, three degrees of freedom can be eliminated by identifying
body j with respect to body 0, for j ̸= 0. We thus perform the transformation

uj 7→ rj = uj − u0 if j ̸= 0, and u0 7→ r0 = u0. (2.52)

The transformation is made canonical by transforming the momenta ũj 7→ r̃j according
to Eq. (2.31). The resulting Hamiltonian does not depend on r0 and r̃0 is constant. It
contains terms of the form r̃0 · r̃j, and those can be eliminated by an extension of the
translation of momenta that we performed for the two body problem. We obtain the 3n
degrees of freedom Hamiltonian (Laskar and Robutel, 1995)

H(r̃, r) =
n∑

j=1

(
r̃j

2

2βj

− Gm0mj

rj

)
+

n∑
j=1

n∑
i=j+1

(
r̃i · r̃j

m0
− Gmimj

|ri − rj|

)
, (2.53)

where βj = m0mj/ (m0 + mj). The first term of the Hamiltonian is a sum of two-body
Hamiltonians like (2.36), and according to Eq. (2.48), Eq. (2.53) can be written in
Poincaré polar coordinates as

H(Λ, D; λ, −ϖ) = HK(Λ) + ιHP (Λ, D; λ, −ϖ), (2.54)

where we restricted ourselves to the planar case7,

HK(Λ) = −
n∑

j=1

β3
j µ2

j

2Λ2
j

, (2.55)

7And so, the Hamiltonian (2.54) has only 2n degrees of freedom.
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and µj = G (m0 + mj). In most practical problems of planetary dynamics, one body is
much more massive than the others, and mj ≪ m0, for j ̸= 0. The Hamiltonian (2.54)
is thus a sum of Kepler problems, perturbed by ιHP . The Keplerian Hamiltonian HK

contains, for instance, star−planet interactions while ιHP contains the planet−planet
interactions. The dimensionless parameter ι is defined as

ι = m1 + m2 + ... + mn

m0
, (2.56)

and is introduced to emphasize the fact that the perturbation is much smaller than the
sum of Kepler problems. Contrary to the Keplerian part, the perturbation ιHP cannot
be given analytically as a function of the Poincaré coordinates, but Laskar and Robutel
(1995) give the expansion

ιHP =
n∑

i=1

n∑
j=i+1

ιHi,j, (2.57)

where

ιHi,j =
∑

k∈Z2

∑
q∈N4

Ξ(Λi, Λj)Xq1
i Xq2

j X̄q3
i X̄q4

j

 ei(k1λi+k2λj) (2.58)

corresponds to the interaction between planet i and planet j. In this expression,
Xj =

√
2/Λj xj = eje

iϖj + O(e3
j), where xj is the complex Poincaré coordinate introduced

by Eq. (2.50). Most of the coefficients Ξ(Λi, Λj) are zero. Indeed, the conservation of
the total angular momentum implies that the Hamiltonian is invariant by the transfor-
mation8 (λi, λj, ϖi, ϖj) 7→ (λi + ϑ, λj + ϑ, ϖi + ϑ, ϖj + ϑ), where ϑ is any constant angle.
Injecting this transformation into Eq. (2.58) shows that, for a non-zero Ξ, the tuples
k = (k1, k2) ∈ Z2 and q = (q1, q2, q3, q4) ∈ N4 comply with the d’Alembert rule

k1 + k2 + q1 + q2 − q3 − q4 = 0. (2.59)

2.2.2 Perturbation theory : Lie serie expansion
We suppose in this subsection that we are facing a N degrees of freedom Hamiltonian
similar to that of Eq. (2.54)

H(I, θ) = H0(I) + ιH1(I, θ), (2.60)

where I = (I1, ..., IN) is the vector of momenta (also called actions), while θ = (θ1, ..., θN)
are the associated angular coordinates. Since ι is much smaller than unity, this Hamiltonian
depends almost only on the momenta, and if ιH1 were to be neglected, it would be trivially
integrated by Eq. (2.42). We assume that among the angles of θ, one of them, say θ1, is
circulating at high frequency and we would like to lose one degree of freedom and simplify
the dynamics by averaging9 the Hamiltonian over it. In other words, we want to find a
canonical transformation

Ψ : R2N → R2N

(I, θ) 7→ (J , φ) ,
(2.61)

8This is an occurence of Noether’s theorem.
9The procedure is readily generalized when several (or all) angles are averaged.
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close to the identity, such that

Ȟ(J , φ) = H(I, θ) = Ȟ0(J) + ιȞ1(J , φ2, .., φN) + ι2Ȟ2(J , φ), (2.62)

where Ȟ = H ◦ Ψ−1. The dependency on φ1 is thus pushed at the second order in ι, and
at first order, the subsequent Hamiltonian has only N − 1 degrees of freedom left. To
ensure a canonical transformation, we choose (Eq. (2.24))

Ψ = Φιχ(−1, ·), or equivalently Ψ−1 = Φιχ(1, ·), (2.63)

where ιχ is a generator that we will constrain to achieve the form (2.62). Once again, ι is
written to emphasize the order of magnitude of the generator. Such an order of magnitude
makes sure that Ψ is ι-close to the identity. We define the Lie derivative of χ(J , φ) as
the time derivative along the flow generated by χ

Lχ := ∂χ

∂J
· ∂

∂φ
− ∂χ

∂φ
· ∂

∂J
= φ̇ · ∂

∂φ
+ J̇ · ∂

∂J
= d

dt

∣∣∣∣
χ
. (2.64)

The Lie derivative often appears written Lχ = {χ, ·} in the literature10. We can now give
for Ȟ the expression

Ȟ = H ◦ Ψ−1 = H ◦ Φιχ(1, ·) =
+∞∑
j=0

L(j)
ιχ

j! (H) = eιLχ(H), (2.65)

where L(j)
ιχ denotes the jth iteration of the Lie derivative, or the jth time-derivative along

the flow of ιχ. Let us expand Eq. (2.65) at second order in ι. We obtain

Ȟ0 + ιȞ1 + ι2Ȟ2 = H0 + ι
(
H1 + {χ, H0}

)
+ ι2

(
{χ, H1} + 1

2 {χ, {χ, H0}}
)

, (2.66)

where, given Eq. (2.65), the different Poisson brackets are evaluated in the new variables.
This yields the following equation, said cohomological, to constrain the generator

H1 − Ȟ1 = {H0, χ} , (2.67)

where we impose on Ȟ1 to be the average of H1 over φ1

Ȟ1 = 1
2π

∫ 2π

0
H1(J , φ)dφ1. (2.68)

The cohomological Eq. (2.67) allows χ to be constrained, and Ȟ2 to be subsequently
determined with Eq. (2.66). The dependency on φ1 can be pushed to even larger orders
of ι by repeating the procedure. The Hamiltonian Ȟ0 + ιȞ1 becomes the new principal
part (formerly H0), while ι2Ȟ2 becomes the new perturbative part (formerly ιH1), and
a new iteration of the method is performed to push the dependency on φ1 to the third
order on ι. The process could, a priori, be pushed up to infinity in order to find a
canonical transformation that completely removes the dependency on φ1, but in general,
the sequence of remainders ιnȞn diverges beyond a certain order and there exists an
optimal order on ι.

10Where the operator {·, ·} is called Poisson bracket.
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Often enough in practice, one will only be interested in pushing the dependency on φ1
up to ι2 and to consider ι2Ȟ2 as a negligible remainder. In that case, the knowlegde of χ
is only useful to retrieve the old variables as a function of the new ones, a transformation
seldomly performed since the new variables are more desirable that the old ones. Indeed,
the canonical transformation induced by the method is quasiperiodic and close to identity,
and the new variables give the tendency of the trajectory, where the fast oscillations due
to φ1 have been removed. This means that in most cases, a first-order Lie serie expansion
reduces to a mere average of the Hamiltonian over the fast-circulating angles.

When needed, the cohomological Eq. (2.67) is solved in the Fourier domain. We write

χ =
∑

k∈ZN \{0}
χkeik·φ, and H1 − Ȟ1 =

∑
k∈ZN \{0}

hkeik·φ, (2.69)

and denoting ω0 = ∂H0/∂J the frequency vector, the solutions of Eq. (2.67) are

χk = hk

ik · ω0
. (2.70)

For a non-zero hk, it is important that ω0 respects the Diophantine-like condition k·ω0 > ι,
so that the order of magnitude of ιχ is ι and the transformation is ι-close to the identity.
If, for instance, the system features a mean-motion resonance ξi,j = piλi + pjλj ≈ 0,
where pi and pj are small integers, then a linear canonical transformation has first to be
applied to the Hamiltonian in order for ξi,j to appear explicitly. Then, the Lie expansion
is performed without averaging upon ξi,j. We use the results of this section at several
occasions throughout the manuscript, and especially in Sect. 4.2.1 where we explain the
notion of libration centre.

2.3 Secular evolution of a planar non-resonant two-
planet system

The remaining chapters of this work will focus on the dynamics of planetary systems
where mean motion resonances between planets exist. The 1 : 1 resonance will be the core
of Chaps. 3 & 6, while the chain of resonance 1 : 1 : 2, and more generally p : p : p + 1,
will be studied in Chaps. 4 & 7. In this section, we focus on the simple case of a planar
two-planet system, far from any mean motion resonance, limiting ourselves to the second
order in eccentricity. This is known as the Laplace-Lagrange approximation. The star
and two planets have masses m0, m1 and m2, respectively. According to Eq. (2.54), the
Hamiltonian of the problem in Poincaré canonical complex variables (Eq. (2.50)) reads

H = −
∑

j∈{1,2}

µ2
jβ

3
j

2Λ2
j

+ ιHP (X1, X2, X̄1, X̄2, λ, Λ), (2.71)

where Xj =
√

2/Λj xj. We are mostly interested in the secular (i.e. long-term) evolution
of the system, and so, we can eliminate two out of the four degrees of freedom by averaging
over the mean longitudes λ1 and λ2. As we proved in Sect. 2.2.2, this amounts in
performing a canonical transformation on the Hamiltonian that sends the dependency on
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these variables in a remainder of order ι2, that we neglect. For convenience, and as we
do not plan to perform the inverse transformation11, we do not change the name of the
variables. In Eq. (2.58), averaging over λ1 and λ2 is equivalent to discarding every terms
such that k ̸= 0. Taking into account the d’Alembert rule (2.59), we can deduce that the
expansion of the perturbative part, truncated at second order in eccentricity, only features
terms of the form XjX̄j or XjX̄k, for j, k ∈ {1, 2}, and we obtain the decomposition

H = −
∑

j∈{1,2}

µ2
jβ

3
j

2Λ2
j

+ m1n2Λ2

m0

(
B0 + B1

(
X1X̄1 + X2X̄2

)
+ B2

(
X1X̄2 + X2X̄1

))
, (2.72)

where n2 is the mean motion of the second planet, defined just below Eq. (2.48). The
dimensionless coefficients B0, B1 and B2 depend on the Λj, that are now constant, since
the dependency on the λj has been lost. As a consequence, the Keplerian part and the
factor B0 are now constant, their gradient is zero and they can be removed from the
Hamiltonian without changing the equations of motion. We thus have the final form of
the two-degrees of freedom Laplace-Lagrange Hamiltonian

HLL(X1, X2, X̄1, X̄2) = m1n2Λ2

m0

(
B1
(
X1X̄1 + X2X̄2

)
+ B2

(
X1X̄2 + X2X̄1

))
. (2.73)

Laskar and Robutel (1995) (top of page 216) give the coefficients B1 and B2 as a function
of the Laplace coefficients

B1 = −1
8αb

(1)
3/2(α),

B2 = 1
4
(
1 + α2

)
b

(1)
3/2(α) − 3

8αb
(0)
3/2(α),

(2.74)

where α = a1/a2 and the Laplace coefficients are the coefficients of the Laurent expansion
(e.g. Laskar, 2005)

(1 − αz)−s
(
1 − αz−1

)−s
= 1

2
∑
k∈Z

b(k)
s (α)zk. (2.75)

The variables Xj and X̄j are not pairs of canonical variables and the equations of motion
are not given by Eqs. (2.18). Nevertheless, (xj; −ix̄j) is a pair of canonical variables and
we can obtain the equations of motion for Xj from those for xj. We have

Ẋj = − 2i

Λj

∂HLL

∂X̄j

, (2.76)

and the complete equations of motion take the form(
Ẋ1
Ẋ2

)
= A

(
X1
X2

)
= −2in2

m0

(
m2α

−1/2B1 m2α
−1/2B2

m1B2 m1B1

)(
X1
X2

)
. (2.77)

This is a constant linear differential system, whose eigenvalues are the roots of the
characteristic polynomial

det (A − ϡI) = ϡ2 +
2iB1n2

(
m1 + α−1/2m2

)
m0

ϡ+ 4 (B2 − B1) (B2 + B1) m1m2n
2
2

m2
0α

1/2 . (2.78)

11See the paragraph before Eq. (2.69) in Sect. 2.2.2, for an explanation.
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For any reasonable choice of masses and semimajor axes, the roots of Eq. (2.78) are
pure imaginary. This means that all the trajectories of an averaged, planar, non-resonant
two-planet system at second order in eccentricity are such that the semimajor axes
are fixed while the eccentricity vectors eje

iϖj behave quasiperiodically (Sect. 2.4.1).
Their fundamental frequencies are given by the eigenvalues. For the planetary system
Sun−Earth−Jupiter, with the current masses and semimajor axes and assumed planar, a
numerical evaluation gives, in arcseconds per year

ϡ1 = i 7.0758 ′′/yr, and ϡ2 = i 0.009198 ′′/yr. (2.79)

2.4 The differential system Ẋ = F (X)

We review in this section some methods to study differential systems of the form Ẋ = F (X),
where F : Rn → Rn is a differentiable vector field.

2.4.1 Fixed points, linearization and eigenvalues
Unless F has a very particular form, the solutions of the Cauchy system

Ẋ = F (X), (2.80)

where X(t = 0) is given, cannot be written analytically. Nevertheless, if the equation
F (X) = 0 has solutions on the set of definition of F , then these solutions are called fixed
points (or equilibria), and in their vicinity, the system (2.80) reduces to a linear system.
Let X0 ∈ Rn be such that F (X0) = 0, and we write X = X0 + δX. A first-order Taylor
expansion in Eq. (2.80) gives

dδX

dt
= ∇F (X0)δX + O

(
|δX|2

)
, (2.81)

and in the vicinity of X0, the Cauchy system (2.80) is studied by diagonalizing (or reducing
to a Jordan form) the matrix ∇F (X0). Let (ϡj)1≤j≤n be the eigenvalues of ∇F (X0). We
call, the linear system, the system (2.81) without O(|δX|2). If the matrix ∇F (X0) is
diagonalizable, then the following holds true12

• If ∀j ≤ n Reϡj ≤ 0, then for any initial condition, the flow of the linear system is
bounded and the system is stable.

• If ∀j ≤ n Reϡj < 0, then for all initial conditions, the linear system converges
towards X0 at exponential speed. The system is asymptotically stable.

• If ∀j ≤ n Reϡj = 0, then all initial conditions lead to a quasiperiodic orbit. If
furthermore ∀i, j ≤ n Imϡi/Imϡj ∈ Q, then the trajectories are periodic.

• If ∃j ≤ n Reϡj > 0, then for all initial conditions, but those in a set of measure
zero, the linear system diverges away from the fixed point X0 at exponential speed,
and its flow is unbounded. The system is unstable.

12And is easily proven by diagonalizing the system.
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The condition that ∇F (X0) be diagonalizable is necessary. Consider for instance the case
where this matrix is nilpotent and non-zero. Then all its eigenvalues are zero but the
trajectories are unbounded for almost all initial conditions. We use the results of this
section in Sect. 6.2.1 to study the stability, with tides, of a pair of co-orbital planets. We
use them again in Sect. 7.2.1 to study the stability, with tides, of the resonance chain
p : p : p + 1.

2.4.2 Eigenvalues of a perturbed matrix
The behaviour of a differential system in the vicinity of its equilibria is described by the
knowledge of its eigenvalues. We consider in this subsection the case where the matrix of
the linearized differential system takes the form

M = M0 + εM1, (2.82)

where ε is a small quantity with respect with unity, written to emphasize the fact that M
is ε-close to M0. The matrix M is too complicated for its eigenvalues to be computed
directly in an analytical manner, but the perturbative approach we present here, briefly
mentioned by Laskar et al. (2012), gives the eigenvalues and eigenvectors very easily.
Assume that we know a diagonal basis for M0

D0 = P −1
0 M0P0 = diag (λi) , (2.83)

where the columns of P0 are the eigenvectors of M0 and the λi its eigenvalues, which
are not assumed to be of multiplicity one but which are assumed to be sorted by value,
that is, equal eigenvalues are consecutive. This does not restrict the generality, as any
permutation can be applied on the columns of P0 to achieve that. We now define

Q1 = P −1
0 M1P0. (2.84)

Let P denote the matrix of the eigenvectors of D0 + εQ1. Since D0 + εQ1 is near diagonal,
we write

P = In + εP1 + O
(
ε2
)

. (2.85)
We have

P −1 (D0 + εQ1) P = D0 + ε
(
Q1 + [D0, P1]

)
+ O

(
ε2
)

, (2.86)

where [D0, P1] = D0P1 − P1D0. Denoting D1 = diag (qi,i) the diagonal matrix composed
of the diagonal terms of Q1, we obtain the cohomological equation

Q1 + [D0, P1] = D1. (2.87)

The solution of the cohomological equation is

pi,j =


qi,j

λj − λi

if |λi − λj| ≫ ε,

0 else,
(2.88)

where εQ1 = (qi,j)1≤i,j≤n and εP1 = (pi,j)1≤i,j≤n. The matrix M0 + εM1 is now block
diagonal, that is

P −1P −1
0 (M0 + εM1) P0P = diag

(
B1

0 + εB1
1, ... , Br

0 + εBr
1

)
, r ≤ n (2.89)
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where the principal matrix of each block is an homothety

∀i ≤ r ∃k ≤ n Bi
0 = λkIm(k), (2.90)

and m(k) denotes the multiplicity of λk and thus the size of the block. The computation
of the eigenvalues of M0 + εM1 is reduced to the computation of the eigenvalues of the
blocks Bi

0 + εBi
1 which are hopefully all of small size and whose eigenvalues are then

analytically easily found.
If the eigenvalues of M0 all have multiplicity one and we are only interested in

computing the eigenvalues of M, then the cohomological Eq. (2.87) does not need to be
solved. At first order in ε, the eigenvalues of M can be read on the diagonal of D0 + εQ1.
This perturbative method was exposed in appendix E of Couturier et al. (2021). We use
it in Sects. 6.2.1 & 6.4.3 to compute the eigenvalues of the differential system describing
the motion of two co-orbital planets perturbed by tidal dissipation, in the vicinity of the
Lagrangian equilateral equilibria. We also use it in Sect. 3.3.3.

2.4.3 Case where F is Hamiltonian
In the case where the vector field F derives from a Hamiltonian function, the differential
system linearized in the vicinity of the equilibria has a particular form and this gives
constraints on the eigenvalues. Assume that there exists a real Hamiltonian H : R2n → R
such that F = J∇H. In the neighbourhood of a fixed point X0 of the differential system,
we note X = X0 + δX and the linearized system reads

dδX

dt
= J∇2H(X0)δX = JSδX, (2.91)

where S = ∇2H(X0) is the Hessian of H evaluated at X0 (Eq. (2.5)). We now prove
that13 (Meyer and Hall, 2009, Sect. 3.3)

• If ϡ is eigenvalue of JS, then so are −ϡ, ϡ̄ and −ϡ̄.

A consequence of this result is that, in the complex plane, the eigenvalues of a linear and
real Hamiltonian system are the vertices of rectangles centered at the origin and whose
edges are parallel to the axes. Another consequence, in virtue of Sect. 2.4.1, is that a
linear and real Hamiltonian system is either unstable or quasiperiodic. In the case n = 1,
we can also deduce that the two eigenvalues of the system are either ϡ = ±λ, or ϡ = ±iλ,
where λ is some positive real number.

We first prove that the matrix A = JS verifies14 A = J tAJ. Indeed we have

J tAJ = J t (JS) J = JS tJJ = JS = A, (2.92)

where we used the fact that S is symmetric for the second equality and tJJ = I for the third.
Because H is real, A is a real matrix and its characteristic polynomial P (ϡ) = det (A − ϡI)
is also real. It is thus clear that if ϡ is eigenvalue, so is ϡ̄. Proving that −ϡ is eigenvalue

13The upper bar denotes the complex conjugated.
14Such matrices are called Hamiltonian matrices.
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if ϡ is, will also prove that −ϡ̄ is eigenvalue if ϡ̄ is. To do that we can show that
det (A − ϡI) = det (A + ϡI). Using det J = 1, we have

det (A − ϡI) = det
(
J tAJ − ϡI

)
= det

(
J tAJ + ϡJJ

)
= det J det

(
tA + ϡI

)
det J = det (A + ϡI) ,

(2.93)

which ends the demonstration.

Protection against destabilization

Another consequence of the previous result is that one degree of freedom Hamiltonians
are protected against destabilization by a Hamiltonian perturbation. Assume that a
dynamical system is governed by a one degree of freedom Hamiltonian H0(p, q), and that
X0 = (p0, q0) is a stable equilibrium of that Hamiltonian. According to what was just
proven, the eigenvalues in the vicinity of X0 are ϡ0 = ±iλ0, where we suppose λ0 > 0 to
prevent trivial dynamics. Assume now that this system is perturbed by a tiny Hamiltonian
perturbation

H(p, q) = H0(p, q) + εH1(p, q), (2.94)
where ε ≪ 1 is written to emphasize the smallness of the perturbation. The fixed point is
displaced at the position X = X0 + εX1 by the perturbation and the eigenvalues, now
given by the spectrum of J∇2H(X), are also perturbed to their new values15

ϡ
(1) = iλ0 + ελ(1), and ϡ

(2) = −iλ0 + ελ(2), (2.95)

where λ(1), λ(2) ∈ C are of the same order of magnitude than λ0. Since the new differential
system is still Hamiltonian, there exists λ ∈ R such that either (ϡ(1),ϡ(2)) = (iλ, −iλ) or
(ϡ(1),ϡ(2)) = (λ, −λ). Given the small size of ε, the latter possibility is excluded, and we
must have (ϡ(1),ϡ(2)) = (iλ, −iλ). The new equilibrium is still stable, and one degree of
freedom Hamiltonian are protected against destabilization by a Hamiltonian perturbation.

We can use this result to prove that the perturbations due to general relativity (second
order in the Post-Newtonian expansion) cannot destabilize a co-orbital system in the same
way that tides do. See Sect. 3.3.1 for details.

15Which are conveniently computed in practice using the results of Sect. 2.4.2



Chapter 3

The co-orbital motion

Most results of this chapter were first published in Robutel and Pousse (2013) and are
recalled in Sect. 2 of Couturier et al. (2021). Section 3.3 is original, while the end of
Sect. 3.2.2 was first published in Couturier et al. (2021).

3.1 Hamiltonian of two planar co-orbital planets
In this chapter, we consider the point-mass, planar, three-body problem, where a star of
mass m0 is orbited by two planets of masses m1 and m2. We introduce the small parameter
ι = (m1 + m2) /m0 and the quantities βj = m0mj/ (m0 + mj) and µj = G (m0 + mj),
where G is the gravitational constant.

3.1.1 Expansion in the neighbourhood of the resonance
In order to define a canonical coordinate system related to the semi-major axis aj, the
eccentricity ej, the mean longitude λj and the longitude of the pericentre ϖj, we use
Poincaré cartesian heliocentric canonical coordinates (λj, x̃j; Λj, xj), defined as (Eq. (2.49),
Sect. 2.1.4)

Λj = βj
√

µjaj, xj =
√

Λj

√
1 −

√
1 − e2

j exp(iϖj), x̃j = −ix̄j. (3.1)

With this set of coordinates, the Hamiltonian derives from the symplectic form∑
j∈{1,2}

(dλj ∧ dΛj + dx̃j ∧ dxj) , (3.2)

and according to Eq. (2.54), we write (Robutel and Pousse, 2013)
H = HK(Λ1, Λ2) + ιHP (Λ1, Λ2, λ1, λ2, x1, x2, x̃1, x̃2), (3.3)

where the Keplerian part HK , due to star−planet interactions, reads (Eq. (2.55))

HK(Λ1, Λ2) = −
∑

j∈{1,2}

β3
j µ2

j

2Λ2
j

, (3.4)

25
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while the perturbation ιHP is due to planet−planet interactions. If the system is at the
co-orbital resonance 1 : 1, then the nominal mean motions of both planets comply with
n1 = n2 := η. In that case, the semi-major axes aj of the planets are close to their nominal
value ā, defined as

ā = µ
1/3
0 η−2/3 and µ0 = Gm0. (3.5)

This also means that the circular angular momenta Λj are close to their nominal value Λ⋆
j

given by
Λ⋆

j = mj

√
µ0ā. (3.6)

At the exact mean motion resonance (also called Keplerian resonance), when n1 = n2 = η,
the semi-major axes are not equal, but rather verify aj = ā (1 + O(ι)). Considering that
the exact co-orbital resonance occurs at a1 = a2 = ā hence generates an error of size O(ι),
as does substituting mj for βj or µ0 for µj, in Eqs. (3.5) and (3.6). However, Niederman
et al. (2020) have shown that the planets are still in the co-orbital resonance if1

Λj

Λ⋆
j

= 1 + O(ιϛ), where 1
3 < ϛ ≤ 1

2 . (3.7)

In other words, the resonance has a width at least O(ι1/2) and errors of size O(ι) have no
consequences. Since we are interested in a study of the dynamics in the vicinity of the
resonance, we expand the Hamiltonian in the neighbourhood of Λj = Λ⋆

j , assuming that
Λ⋆

j is the value of Λj at the exact resonance.
In the co-orbital resonance, the librating angle λ1 − λ2 plays an important role and in

order for it to appear explicitly, we perform the canonical transformation (see Eq. (2.31))

Φ1(Λ1, Λ2, λ1, λ2) = (Z, Z2, ϕ, ϕ2) = (Λ1 − Λ⋆
1, Λ1 + Λ2 − Λ⋆

1 − Λ⋆
2, λ1 − λ2, λ2) . (3.8)

At second order in (Z, Z2), the Keplerian part of the Hamiltonian reads

ĤK(Z, Z2) = HK(Λ1, Λ2) = ηZ2 − 3
2η

(
Z2

Λ⋆
1

+ (Z2 − Z)2

Λ⋆
2

)
+ R̂

(2)
K , (3.9)

where ĤK = HK ◦ Φ−1
1 and a constant term −η (Λ⋆

1 + Λ⋆
2) /2, corresponding to the

order 0, has been removed. The remainder R̂
(2)
K has a size relative to the expansion

R̂
(2)
K /ĤK = O(ι2ϛ), or equivalently2

R̂
(2)
K = O(ι3ϛ)HK . (3.10)

Since the perturbation is small with respect to the Keplerian part, it is not necessary to
expand it up to the second order in the vicinity of Λ⋆

j . If we limit ourselves to the zeroth
order, that is

HP (Λ1, Λ2, λ1, λ2, x1, x2, x̃1, x̃2) = HP (Λ⋆
1, Λ⋆

2, λ1, λ2, x1, x2, x̃1, x̃2) + R
(0)
P , (3.11)

then the size of the remainder relative to the expansion is R
(0)
P /HP = O(ιϛ), that is

R
(0)
P = O(ι1+ϛ)HK . (3.12)

1This domain for ϛ corresponds to the horseshoe-shaped orbits (Sect. 3.2.1).
2The removal of the constant −η (Λ⋆

1 + Λ⋆
2) /2 from ĤK yields ĤK/HK = O(ιϛ).
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Combining the estimates (3.10) and (3.12), we obtain

R
(0)
P

R̂
(2)
K

= O(ι1−2ϛ). (3.13)

We can verify that truncating the expansion (3.11) at order zero in the vicinity of the
Keplerian resonance is enough. When ϛ ≤ 1/2, Eq. (3.13) shows that R

(0)
P is negligible

with respect to R̂
(2)
K , whereas when ϛ > 1/2 (this corresponds to tadpole orbits, see Sect.

3.2.1), the estimates (3.10) and (3.12) show that both remainders quickly tend to 0 with
increasing ϛ. In both cases, the order 0 is enough and we simply evaluate the perturbation
HP at Λj = Λ⋆

j .
Lastly, for the expansion (3.9) to be valid, it is important that R̂

(2)
K is negligi-

ble with respect to HP . Combining R
(0)
P /HP = O(ιϛ) with Eq. (3.13), we can write

R̂
(2)
K /HP = O(ι3ϛ−1), and we must have ϛ > 1/3. This is the lower bound of Niederman

et al. (2020).

3.1.2 Averaged Hamiltonian
The timescales of evolution can be established by uncoupling the action variables in the
Keplerian Hamiltonian. We perform the canonical transformation (Eq. (2.31))

Φ2(Z, Z2, ϕ, ϕ2) = (I, I2, ξ, ξ2) = (Z − δZ2, Z2, ϕ, δϕ + ϕ2) , with δ = m1

m1 + m2
, (3.14)

where xj and x̃j are unchanged. The Keplerian part of the Hamiltonian takes the form

ȞK(I, I2) = ĤK(Z, Z2) = ηI2 − 3
2η

I2
2

Λ⋆
1 + Λ⋆

2
− 3

2η
Λ⋆

1 + Λ⋆
2

Λ⋆
1Λ⋆

2
I2, (3.15)

where ȞK = ĤK ◦ Φ−1
2 . This decoupling emphasizes the timescales involved in the

dynamics. The Hamilton Eqs. (2.18) give

ξ̇2 = ∂ȞK

∂I2
= η

(
1 + O(ιϛ)

)
and ξ̇ = ∂ȞK

∂I
= η O(ιϛ), (3.16)

and so, the angle ξ2 evolves much more quickly than ξ = λ1 − λ2. As we will show in
Sect. 3.2.2, the eccentricities xj evolves on timescales much longer than the timescale
of evolution of ξ. This means that the co-orbital dynamics takes place on three distinct
timescales. The fast one, of frequency η O(1) is associated with ξ2 (or either of the λj),
the semi-fast one, of frequency η O(ιϛ), is associated with the libration of ξ, while the
secular (or slow) one has a frequency η O(ι) and is associated with the xj. This will be
further detailed in Sects. 3.2.1 & 3.2.2.

Since the angle ξ2 evolves at the orbital frequency, it is natural to average the
Hamiltonian over it; that is, we perform a first-order Lie serie expansion (Sect. 2.2.2) and
write3

Ȟ(I, I2, ξ, x1, x2, x̃1, x̃2) = ȞK(I, I2) + 1
2π

∫ 2π

0
ιȞP (ξ, ξ2, x1, x2, x̃1, x̃2)dξ2 + Ř(2), (3.17)

3The Lie expansion performs on the Hamiltonian a canonical transformation ι-close to the identity,
but for convenience, we do not change the name of the variables.
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where ȞP = HP ◦ Φ−1
1 ◦ Φ−1

2 and Ř(2) is the remainder of the Lie expansion. Requesting
that Ř(2) ≪ ȞP yields once again ϛ > 1/3 (Niederman et al., 2020). After the averaging
process, the Hamiltonian no longer depends on ξ2 and its conjugated momentum I2 is a
first integrale. That is, the total circular angular momentum Λ1 + Λ2 is conserved in the
averaged problem. In the co-orbital resonance 1 : 1, this quantity corresponds, for other
resonances, to what various authors call the scaling parameter (Michtchenko et al., 2008;
Delisle, 2017; Petit et al., 2020). In the averaged problem, the conservation of Λ1 + Λ2
allows us to lose one degree of freedom, and we are left with the three degrees of freedom
(ξ, x̃1, x̃2; I, x1, x2).

While the total circular angular momentum Λ1 + Λ2 is conserved in the averaged
problem, it is well known that the total angular momentum ∑

j Λj −|xj|2 is also conserved4,
even in the complete (non-averaged) problem. Hence, there exists a transformation allowing
one more degree of freedom to be lost, and the averaged planar co-orbital problem has
two degrees of freedom. More generally, an averaged, resonant, two-planet planar system
has two degrees of freedom5. The transformation to two degrees of freedom is performed
by Giuppone et al. (2010) in their numerical study of the co-orbital motion. However, the
subsequent set of coordinates is singular at zero eccentricity, which is not adapted for an
analytical work. Hence we stick here with three degrees of freedom.

In order to work with dimensionless quantities, we normalise the action variables by

J = I

mā2η
, J2 = I2

mā2η
, Xj =

√
2

mj ā2η
xj, X̄j = i

√
2

mj ā2η
x̃j, (3.18)

where m = √
m1m2 and the upper bar denotes the complex conjugated. These new

eccentricity variables comply with

Xj = ej exp(iϖj)
(
1 + O(ιϛ) + O(e2

j)
)

. (3.19)

The order of magnitude of J and J2 is O(ιϛ) and these variables are linked to the semi-major
axes aj by

aj = āR2
j , (3.20)

with

Rj = 1 + fj, f1 = m

m1 + m2
J2 + m

m1
J, f2 = m

m1 + m2
J2 − m

m2
J. (3.21)

The transformations Φ1 and Φ2 are canonical (Sect. 2.1.3), but the normalization (3.18)
is not. We can nevertheless have equations of motion close to their canonical form (2.18)
by rescaling the Hamiltonian by

H = Ȟ

mā2η
, (3.22)

and we obtain, for the equations of motion (see Eq. (2.76))

J̇ = −∂H
∂ξ

, J̇2 = −∂H
∂ξ2

, ξ̇ = ∂H
∂J

, ξ̇2 = ∂H
∂J2

, Ẋj = −2i
m

mj

∂H
∂X̄j

, ˙̄Xj = ¯̇Xj. (3.23)

4The total AMD
∑

j |xj |2 (Laskar, 2000) is thus conserved in the averaged 1 : 1 resonance.
5Henrard and Lemaitre (1983) even showed that at first order in eccentricity, the system has only one

degree of freedom.
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With this last transformation, the Keplerian part of the Hamiltonian reads

HK(J) = −3
2η

m1 + m2

m
J2, (3.24)

where the constant terms depending only on the first integral J2 have been ignored. In
Chap. 6, due to tidal dissipation, J2 is no longer a first integral and HK includes more
terms (see Eq. (6.12)).

3.1.3 Expansion of the perturbative part
In the set of canonical coordinates (r̃j ; rj), where rj and r̃j are respectively the heliocentric
positions and barycentric momenta, the perturbation to the Hamiltonian takes the form
given by Eq. (2.53)

ιHP (rj , r̃j) = r̃1 · r̃2

m0
− Gm1m2

|r1 − r2|
. (3.25)

We write6

|r1 − r2|2 = r2
1 + r2

2 − 2r1r2 cos(r1, r2) = ā2∆2
(
1 + O(e2

j)
)

, (3.26)

where ∆ =
√

2 − 2 cos ξ, and we expand HP in power series of the eccentricities. The
expansion takes the form (Robutel and Pousse, 2013; Couturier et al., 2021)

ιHP =
+∞∑
n=0

H(2n), with H(2n) =
∑

|p|=2n

Ψp(∆−1, eiξ, e−iξ) Xp1
1 Xp2

2 X̄p3
1 X̄p4

2 , (3.27)

where the norm of the tuple p = (p1, p2, p3, p4) ∈ N4 is defined by |p| = p1 + p2 + p3 + p4
and Ψp is polynomial in its arguments. The d’Alembert rule (Eq. (2.59))

p1 + p2 = p3 + p4, (3.28)

equivalent to the conservation of the total angular momentum, justifies that the expansion
has no terms of odd order in eccentricity. In practice, the expansion (3.27) can be explicitly
computed from the results of Laskar and Robutel (1995). We apply the transformations
Φ1 and Φ2 to HP , as well as the normalisation (3.18) and the rescaling (3.22). We use the
algebraic manipulator Trip (Gastineau and Laskar, 2011), and up to the fourth order in
eccentricity, we obtain (Couturier et al., 2021)

H(0) = m

m0
η
(
cos ξ − ∆−1

)
,

H(2) = 1
2

m

m0
η
{
Ah

(
X1X̄1 + X2X̄2

)
+ BhX1X̄2 + B̄hX̄1X2

}
,

H(4) = 1
4

m

m0
η
{
Dh

(
X2

1 X̄2
1 + X2

2 X̄2
2

)
+ EhX2

1 X̄2
2 + ĒhX2

2 X̄2
1

+Fh

(
X1X2X̄

2
1 + X̄1X̄2X

2
2

)
+ F̄h

(
X̄1X̄2X

2
1 + X1X2X̄

2
2

)
+ GhX1X2X̄1X̄2

}
,

(3.29)

6This is because we expand at the zeroth order in Λj , see Sect. 3.1.1.
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where the coefficients of the second order are

Ah = 5 cos 2ξ − 13 + 8 cos ξ

4∆5 − cos ξ and

Bh = e−2iξ − e−3iξ + 16e−2iξ − 26e−iξ + 9eiξ

8∆5 .

(3.30)

The coefficients Dh, Eh, Fh and Gh of the fourth order in eccentricity are given in Eqs.
(B.1) of appendix B.

3.2 Lagrangian equilibria and linearization

3.2.1 Circular dynamics
The expansion of the perturbative part of the Hamiltonian has no terms of odd degree in
the variables Xj (Eq. (3.29)). As a consequence, the form of dXj/dt in Eqs. (3.23) implies
that the manifold X1 = X2 = 0 is stable by the flow of the averaged Hamiltonian. In other
words, initially circular orbits remain circular. The dynamics on this stable manifold is
driven by the one-degree-of-freedom Hamiltonian HK + H(0), whose phase space we plot in
Fig. 3.1. This Hamiltonian has three fixed points at (J = 0, ξ = π/3), (J = 0, ξ = 5π/3)
and (J = 0, ξ = π), corresponding to the famous Lagrangian equilibria. The two elliptic
points L4 and L5, located on energy maximizers, correspond to configurations where the
three bodies are at the vertices of an equilateral triangle, while the hyperbolic configuration
L3 is a saddle point, where the bodies are aligned. The separatrix emanating from L3

Fig. 3.1 — Phase portrait of the Hamiltonian HK + H(0) with m1 = 0.001 m0 and m2 =
0.0004 m0. The two elliptic fixed points L4 and L5 are energy maximizers, while the hyperbolic
fixed point L3 is a saddle point. Around L4,5 are the tadpoles orbits and outside of the separatrix
emanating from L3 are the horseshoe-shaped orbits. The Hamiltonian diverges to minus infinity
as λ1 − λ2 = ξ tends to zero.
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Fig. 3.2 — Relative position of m1 with respect to m2 along the trajectories of the Hamiltonian
HK + H(0). The trajectories are numerically integrated with a Dormand-Prince method of
order 8 using initial conditions J = 0 and either ξ = ±45◦ (orange tadpoles) or ξ = 10◦ (black
horseshoe). The curves show the motion of m1 relative to the black dot m2; that is, the x and
y axes of this figure are (x, y) = (a1 cos ξ − a2, a1 sin ξ), the aj coming from Eq. (3.20) with
J2 = 0. The co-orbital masses are m2 = 5 m1 = 0.001 m0. The period of the motion is here
12.11 T for the black curve and 11.32 T for the orange ones, where T = 2π/η.

splits the phase space in three regions. Around the elliptic fixed points L4 and L5 are orbits
commonly known as tadpole, while the orbits encircling L3 are called horseshoe-shaped
orbits, due to the shape of the trajectories in the rotating frame (see Fig. 3.2). In our
model, the angle ξ = λ1 − λ2 is always librating and the exterior of the resonance does
not exist. If no expansion in the vicinity of the Keplerian resonance Λj = Λ⋆

j is performed,
the phase space contains two more hyperbolic fixed points labeled L1 and L2, and the
separatrices emanating from them are the boundary of the co-orbital resonance (see Fig.
1 of Robutel and Pousse, 2013). Instead, our phase space features a singular line ξ = 0
where the Hamiltonian diverges to −∞, and the model is not valid for very large libration
amplitudes.

We show with Eq. (3.16) that the libration frequency of ξ is η O(ιϛ). In the vicinity of
L4,5, we can give an exact expression by linearizing the differential system. We denote
∆ξ = ξ − π/3 and in the neighbourhood of L4 (the dynamics are symmetric in the
neighbourhood of L5), the linearized system reads

d

dt

(
∆ξ
J

)
= η

(
0 −3ιm0

m
9m
4m0

0

)(
∆ξ
J

)
, (3.31)

and its eigenvalues are ±iν where

ν = η

√
27ι

4 (3.32)

is the libration frequency of ξ in the vicinity of the elliptic Lagrangian equilibria.
For a given trajectory in the phase space, we denote ξex, respectively Jex, the extremal

value reached by ξ, respectively by J , along that trajectory. When the action is J = Jex,
the angle is ξ = π/3, whereas ξ = ξex implies J = 0 (Fig. 3.1). The conservation of
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HK + H(0) (Eq. (2.32)) hence gives the relation

−3
2

(m1 + m2) m0

m1m2
J2
ex − 1

2 = cos ξex − (2 − 2 cos ξex)−1/2 , (3.33)

that holds whether the extremum is a minimum or a maximum. The boundary between
tadpole and horseshoe-shaped orbits is the separatrix emanating from L3, and for the
largest tadpole orbit (or the the smallest horseshoe-shaped orbit), ξex = π yields Jex =
O(ι1/2). The boundary between the tadpole and horseshoe domain thus corresponds7

to ϛ = 1/2, which is the upper bound in Eq. (3.7). For ϛ < 1/2, the system is in the
horseshoe domain while it is in the tadpole domain for ϛ ≥ 1/2.

For a horseshoe-shaped orbit with a very large libration amplitude, we call ξmin the
minimal value reached by ξ, that is, the minimal angular separation between both co-
orbitals. In the following, we compute the value of ξmin such that the co-orbital planets
stay outside of each other Hill’s spheres. The closest approach d is given by

d = āξmin. (3.34)

At the closest approach, we perform a Laurent expansion around ξmin = 0 in the right-hand
side of Eq. (3.33), retaining only terms of order −1 and 0 in ξmin. This gives

3
2
d

ā

(
1 + ιm2

0
m1m2

J2
ex

)
= 1. (3.35)

For a large horseshoe-shaped orbit, ϛ < 1/2 implies that 1 ≪ ιm2
0J

2
ex/m1m2 and the

estimate Jex = O(ιϛ) yields
d = O(ι1−2ϛ) ā. (3.36)

Our model is based on a perturbative approach where the planet−planet interactions
are assumed to be much smaller than the star−planet interactions. For this approach to
make sense, it is necessary that the co-orbital bodies stay well outside of each other Hill’s
spheres, that is

d ≫ ā
(

ι

3

)1/3
, (3.37)

or equivalently, using Eq. (3.36)

O(ι2/3−2ϛ) ≫ 1. (3.38)

We retrieve once again the lower bound 1/3 < ϛ given by Niederman et al. (2020), showing
that this lower bound can be obtained in three different manners. We can either request
that

• the remainder R̂
(2)
K of the expansion (3.9) around the Keplerian resonance is negligible

with respect to the perturbative part HP of the Hamiltonian, or that

• the remainder Ȟ(2) of the Lie serie expansion (3.17) is negligible with respect to ȞP ,
or that

• the co-orbital planets do not enter each other Hill’s spheres.

These three conditions are equivalent to 1/3 < ϛ in Eq. (3.7).
7This is due to Jex = O(ιϛ).
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3.2.2 Eccentric dynamics

The secular dynamics of the problem is driven by the Hamiltonian HK +H(0) +∑n≥1 H(2n).
If we limit the summation to n = 1; that is, if we only consider H = HK + H(0) + H(2),
the equations of motion are linear in Xj (see Eqs. (3.23) & (3.29)), which is convenient to
obtain analytical results at low eccentricity. We show in Chap. 6 that tidal dissipation
damps the eccentricities to 0, and the analytical insight at low eccentricity allows us to
understand most of the dynamics. Hence we only consider H = HK + H(0) + H(2) in the
rest of this chapter and we will include H(4) back again in Sect. 6.1.1 when we include
tidal dissipation in the analytical model. At this order in eccentricity, the equations of
motion read (

Ẋ1
Ẋ2

)
= − iη

m0

(
m2Ah(ξ(t)) m2B̄h(ξ(t))
m1Bh(ξ(t)) m1Ah(ξ(t))

)(
X1
X2

)
, (3.39)

where (J(t), ξ(t)) is a solution of HK + H(0), such as those plotted in Fig. 3.2. The system
of Eqs. (3.39) is linear and periodic of time and in general, its stability can be studied,
at least numerically, with the Floquet theory. Nevertheless, at one of the Lagrangian
equilibria, the solutions of HK + H(0) are constant and system (3.39) becomes both linear
and time-independent, and is studied by diagonalisation. The hyperbolic point L3 is
unstable, and we are not interested in its dynamics. Both elliptic equilibria L4 and L5 are
symmetric by the transformation ξ 7→ −ξ and it is enough to study one of them only. We
study the eccentric dynamics at L4 and we set (J, ξ) = (0, π/3) in Eq. (3.39); that is, we
set (see Eq. (3.30))

Ah = −27
8 and Bh = 27

8 e−iπ/3. (3.40)

The matrix
M0 = − iη

m0

(
m2Ah m2B̄h

m1Bh m1Ah

)
(3.41)

of the differential system has eigenvalues ig1 and ig2 where

ig1 = iη
27ι

8 , ig2 = 0, (3.42)

with associated eigenvectors

V1 =
(

m2e
4iπ/3

m1

)
and V2 =

(
eiπ/3

1

)
. (3.43)

The neutral eigenmode, collinear to V2, is the so-called Lagrange configuration where

X1

X2
= exp

(
i
π

3

)
. (3.44)

Since the corresponding eigenvalue ig2 is zero, this configuration corresponds to a family
of fixed points parameterized by J2 ∝ Λ1 + Λ2, where the eccentricities verify e1 = e2
and ϖ1 − ϖ2 = π/3. The precessing eigenmode, collinear to V1, is called anti-Lagrange
configuration by Giuppone et al. (2010) and verify

X1

X2
= m2

m1
exp

(
i
4π

3

)
. (3.45)
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Along this family of periodic orbits, the eccentricities are constant such that m1e1 = m2e2
and the pericentres precess at the same frequency ηg1 while maintaining the relation
ϖ1 − ϖ2 = 4π/3.

For an arbitrary solution (J(t), ξ(t)), the differential system (3.39) has a priori to be
studied with the Floquet theory, which generally does not allow for analytical expressions8.
Nevertheless, since g1 ≪ ν, the system (3.39) can be studied by time-averaging over one
period of ξ. This is justified mathematically by the existence of a canonical transformation
Ψ (Theorem 4.5 of Niederman et al., 2020, second averaging theorem)

Ψ(J, ξ) =
(

J
·
, ξ

·

)
, (3.46)

such that the dependency on ξ
·

is pushed to the second order in eccentricity, that is

H
·
(J

·
, ξ

·
, Xj, X̄j) = H(J, ξ, Xj, X̄j) = HK

·
(J

·
) + H

·
(0)(J

·
) + H

·
(2)(J

·
, ξ

·
, Xj, X̄j), (3.47)

where H
·

= H ◦ Ψ−1. A first-order Lie serie expansion (Sect. 2.2.2) performed on Eq.
(3.47) would then allow the dependency on ξ

·
to be lost, where HK

·
+ H

·
(0) plays the role

of H0 in Eq. (2.60).
The coefficients of the time average of M0(t) cannot be given analytically, but in

the horseshoe domain, the symmetry of the orbits allows some analytical insight. The
expression of Bh in Eq. (3.30) shows that Im(Bh(2π − ξ)) = −Im(Bh(ξ)), and since the
trajectories (J(t), ξ(t)) are symmetric around (0, π) in the horseshoe domain (see Fig.
3.1), the time average of ImBh vanishes for horseshoe-shaped orbits. As a consequence,
the coefficients of the averaged matrix

M0 = 1
2π

∫ 2π

0
M0(ξ

·
)dξ

·
= − iη

m0

(
m2Ah m2Bh

m1Bh m1Ah

)
, (3.48)

are pure imaginary. Diagonalising M0 shows that its eigenvectors are such that

arg
(

X1

X2

)
= ϖ1 − ϖ2 = 0, (3.49)

for the Lagrange-like configuration, while

arg
(

X1

X2

)
= ϖ1 − ϖ2 = π, (3.50)

for the anti-Lagrange-like configuration. This corresponds to aligned and anti-aligned
pericentres. We show in Chap. 6 that for a system initially close to L4, tidal dissipation
induces an exponential increase of the libration amplitude, and the system ends up reaching
the horseshoe-shaped orbits. In that case, for a system in the Lagrange configuration
(resp. in the anti-Lagrange configuration), the difference of the pericentres ϖ1 − ϖ2 starts
at π/3 (resp. 4π/3) and decreases until it reaches 0 (resp. π) when the system reaches
the horseshoe-shaped orbits. This is very visible in Fig. 6.4

8The monodromy matrix cannot be computed analytically.
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3.3 Contribution of general relativity

Up to this point, we have studied the point-mass co-orbital resonance 1 : 1 according to
the Newtonian laws. In this section, we maintain the point-mass approximation but we
now consider that the three bodies interact according to the laws of general relativity. As
long as the nominal semimajor axis ā is large with respect to the Schwarzschild radius

rs = 2Gm0

c2 (3.51)

of the star, where c is the speed of light, the general relativity only slightly perturbs the
motion as described by the laws of Newton, and we will only consider in this section the
first Post-Newtonian corrections of the general relativity.

3.3.1 Some intuition

In the circular case, the dynamics of the co-orbital resonance in the Newtonian, point-mass
approximation are described by the one degree of freedom Hamiltonian (Eqs. (3.24) &
(3.29))

H0(J, ξ) = HK(J) + H(0)(J, ξ). (3.52)

Since the perturbations due to general relativity can be written in Hamiltonian form (Eq.
(3.54)), there exists a Hamiltonian H1(J, ξ) such that, in the circular case, the Hamiltonian
of the co-orbital resonance in the Post-Newtonian expansion reads

H0(J, ξ) + εH1(J, ξ), (3.53)

where ε = v2/c2 ≈ rs/ (2ā) ≪ 1 is written to emphasize the smallness of H1 with respect to
H0 and v = āη is the orbital speed of the co-orbitals. The two Lagrangian equilibria of H0
at (J, ξ) = (0, ±π/3), are elliptic (stable), since the eigenvalues in their vicinity, ±iν (see
Eq. (3.32)), are pure imaginary. The eigenvalues of H0 + εH1 will be a slight perturbation
of ±iν, and the Lagrangian equilibria may become unstable under the influence of general
relativity if one of the eigenvalues is perturbed to a strictly positive real part (Sect. 2.4.1)

Nevertheless, we proved at the end of Sect. 2.4.3 that one degree of freedom Hamilto-
nians are protected against destabilization by a Hamiltonian perturbation. This means
that the eigenvalues in the vicinity of the Lagrangian equilibria will indeed be perturbed
by general relativity, but the perturbations will themselves be pure imaginary, and we
know without calculations that the Lagrangian equilibria are stable under the effect of
general relativity.

This is at least true at the first post-Newtonian approximation, because at the fifth
order in v/c and beyond, the emission of gravitational waves induces a dissipation of the
orbital energy and prevents the perturbations due to general relativity to be written in
Hamiltonian form. Since the Lagrangian equilibria L4 and L5 are energy maximizers (Fig.
3.1), a dissipation of the total orbital energy should in that case make the Lagrangian
equilibria unstable.
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3.3.2 The Post-Newtonian Hamiltonian
At first order in ε = v2/c2, the Hamiltonian of two bodies of masses m0 and mj reads (e.g.
Landau and Lifshitz, 1980, page 366)

HRG(r̂j , rj) = r̂j
2

2βj

− Gm0mj

rj

−
r̂4

j

8c2

(
1

m3
0

+ 1
m3

j

)
+ G2m0mj (m0 + mj)

2c2r2
j

− G
2c2rj

3r̂j
2
(

mj

m0
+ m0

mj

+ 7
3

)
+
(

r̂j .
rj

rj

)2
 ,

(3.54)

where r̂j and rj are respectively the barycentric momentum and heliocentric position,
defined in Sect. 2.1.4. The first two terms give the Hamiltonian of the two-body problem
in the Newtonian approximation (see Eq. (2.36)), and we remove them in order to only
keep the relativistic perturbations. Due to the low mass of the planets with respect to that
of the star, we do not take into account the planet−planet non-Newtonian interactions.
Neglecting mj/m0 in front of 1, we write the relativistic perturbations to the Hamiltonian
of the co-orbital problem as εH1 = H(1)

RG + H(2)
RG, where

H(j)
RG = −

r̂4
j

8c2m3
j

+ G2m2
0mj

2c2r2
j

− 3
2

Gm0r̂j
2

mjc2rj

. (3.55)

As in Sect. 3.1.3, we rewrite the Hamiltonian H(j)
RG in the variables (J, J2, ξ, ξ2, Xj, X̄j).

We are only interested in the secular (i.e. long-term) evolution of the orbits, and we
average over the angle ξ2. Even though the perturbation HP , due to planet−planet
Newtonian interactions, was expanded at the zeroth order (Eq. (3.11)) in the variables Λj

around the Keplerian resonance (Eq. (3.6)), we keep exact expressions9 in the Λj (that is
in J and J2) for H(j)

RG. At second order in eccentricity, the Hamiltonian H(j)
RG reads, after

performing the rescaling (3.22)

H(j)
RG = −9

8εη
mj

m
R−4

j

(
1 + 4

3R−1
j XjX̄j

)
, (3.56)

where the quantity Rj(J) was defined by Eq. (3.20) and m = √
m1m2. The total

Hamiltonian that we consider for the planar relativistic co-orbital resonance is then

H = HK + H(0) + H(2) +
∑

j∈{1,2}
H(j)

RG, (3.57)

where HK is given by Eq. (3.24) and H(0) and H(2) are given by Eq. (3.29). The pair of
variables (Xj, X̄j) is not canonical and the equations of motion are given by Eq. (3.23).
We obtain the differential system

J̇ = −∂(H(0) + H(2))
∂ξ

,

ξ̇ = ∂HK

∂J
+ 9

2ηε

{
R−5

1

(
1 + 5

3
X1X̄1

R1

)
− R−5

2

(
1 + 5

3
X2X̄2

R2

)}
,

Ẋj = −2i
m

mj

∂H(2)

∂X̄j

+ 3iηεR−5
j Xj.

(3.58)

9A zeroth-order expansion loses all dynamical information in the circular case.
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General relativity also introduces a small perturbation on ξ̇2, but since the differential
system does not depend on this fast angle, and we are not interested in its dynamics, we
ignored the corresponding line in Eq. (3.58).

3.3.3 Equilibria and linearization
Taking into account the contributions of general relativity, the Lagrangian equilibria
are the fixed point of the differential system (3.58). They still correspond to Xj = 0,
and in their vicinity, the degree of freedom (J, ξ) is uncoupled from the two degrees of
freedom (Xj, X̄j). We are once again able to study the circular and the eccentric dynamics
separately.

Circular dynamics

We evaluate the differential system (3.58) at Xj = 0. Because R1(J = 0) = R2(J = 0),
and since general relativity does not perturb the value of dJ/dt, it is easy to see that the
Lagrangian equilibria are not displaced by general relativity. The points L4 and L5 are
still located at (J, ξ) = (0, ±π/3). The point L3, located at (J, ξ) = (0, π), is hyperbolic
without general relativity, and given the considerations stated in Sects. 2.4.3 & 3.3.1, we
know that general relativity will not make it elliptic, and we are still not interested in its
dynamics.

As in Sect. 3.2.1, we linearize the system (3.58) in the vicinity of L4. The resulting
linear system is a small perturbation of Eq. (3.31). Writing ∆ξ = ξ − π/3, we have

d

dt

(
∆ξ
J

)
= η

 0 −3m1 + m2

m

(
1 + 15

2 ε
)

9m

4m0
0


(

∆ξ
J

)
. (3.59)

The eigenvalues of this linear system can be computed immediately, as

±iν
(

1 + 15
4 ε
)

, (3.60)

where ν, the libration frequency of the co-orbitals without general relativity, is given by
Eq. (3.32) and we recall that v = āη. As we guessed in Sect. 3.3.1, the Lagrangian
equilibria are still elliptic and general relativity is only able to slightly increase the libration
frequency.

Eccentric dynamics

Here, we simply repeat the calculations from Sect. 3.2.2, taking into account corrections
due to general relativity. At the Lagrangian point L4, the eccentricities are governed by
the linear differential system

d

dt

(
X1
X2

)
= M

(
X1
X2

)
, (3.61)

where the matrix M is a perturbation of the matrix M0 given in Eq. (3.41). It reads

M = M0 + 3iηεI2 = M0 + εM1. (3.62)
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The perturbative approach described in Sect. 2.4.2 allows the eigenvalues of M to be
obtained without any calculation. Indeed, M1 is proportionnal to identity, so it keeps the
same expression in any basis. Since the perturbations to the eigenvalues are given by the
diagonal terms of M1, written in a basis that diagonalizes M0, we can conclude that the
perturbations to the eigenvalues are simply the diagonal terms of 3iηεI2. Denoting ϡ1
and ϡ2 the eigenvalues of M, we thus have, at first order in ε (see Eq. (3.42))

ϡ1 = ig1 + 3iηε, ϡ2 = ig2 + 3iηε = 3iηε. (3.63)

In particular, after one orbital period, the precession of the pericentres due to general
relativity, for both Lagrange and anti-Lagrange eigenmodes, amounts to

δϖ = 6πε = 6πGm0

āc2 , (3.64)

which is the well-known expression of the pericentre advance in general relativity. The
eigenvalues ϡj are both pure imaginary, and even in the eccentric case, general relativity
is unable to make the Lagrangian equilibria unstable.

3.4 Conclusion
In this chapter, we built an analytical model to study the planar 1 : 1 mean-motion
resonance. We studied the limits of validity of the model by estimating the sizes of the
remainders of the expansions that we performed. We showed that near the Lagrangian
equilateral equilibria, the circular and eccentric dynamics are uncoupled, which allowed us
to study them separately. By linearizing the equations of motions in the neighbourhood of
the Lagrangian equilibria, we gave analytical expressions of the fundamental frequencies
of the system.

In the last section of the chapter, we included the perturbations due to general relativity,
showing that the relativistic effects cannot destabilize the Lagrangian equilibria. These
effects are only able to slightly modify the fundamental frequencies of the system, and we
analytically computed these changes.



Chapter 4

Co-orbital planets in a planar first-order
resonance chain

The results of this chapter were first published in Couturier et al. (2022).

4.1 Hamiltonian of the p : p : p + 1 resonance chain
It has been shown that, at least around low mass stars, co-orbital planets are often formed
within a resonance chain (Leleu et al., 2019). In this chapter, we study an occurrence of
the planar four-body problem where a star of mass m0 is orbited by two co-orbital planets
of mass m1 and m2, and a third planet of mass m3 further away from the star and in a
first-order mean motion resonance with the pair of co-orbital planets. In other words,
we study the planar p : p : p + 1 resonance chain, where the co-orbitals have a certain
nominal period and the nominal period of the outermost third planet is (p + 1) /p that of
the co-orbitals. We perform the calculation for any value of the integer p, but the figures
that we show in this chapter and in Chap. 7 are for p = 1, that is for the resonance chain
1 : 1 : 2. We do not take into account effects due to general relativity.

4.1.1 The averaged Hamiltonian

We denote (Λ̃j, D̃j; λj, −ϖj) the Poincaré canonical variables (Eq. (2.49), Sect. 2.1.4),
that is, we write

Λ̃j = βj
√

µjaj and D̃j = Λ̃j

(
1 −

√
1 − e2

j

)
, (4.1)

where λj and ϖj are the mean longitude and longitude of the pericentre (of the jth

planet), respectively. As in Chap. 3, we have defined βj = m0mj/ (m0 + mj) and
µj = G (m0 + mj), where G is the gravitational constant. According to Eq. (2.54), we
write the complete Hamiltonian as

H = HK(Λ̃j) + ιHP (Λ̃j, λj, D̃j, ϖj), (4.2)

39
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where the Keplerian part, due to star−planet interactions, reads (Eq. (2.55))

HK = −
∑

j∈{1,2,3}

β3
j µ2

j

2Λ̃2
j

, (4.3)

and the perturbation HP , due to planet−planet interaction, has a size relative to HK

of order ι = (m1 + m2 + m3) /m0. We assume that the system is close to the resonance
p : p : p + 1. This means that the nominal mean motions verify

n
(0)
1 = n

(0)
2 := η = p + 1

p
n

(0)
3 , (4.4)

while the nominal semi-major axes a
(0)
j are related to n

(0)
j by the Kepler law n

(0)
j

2
a

(0)
j

3
=

µ0 = Gm0. The aj are always close to their nominal value a
(0)
j , and the Λ̃j stay close to

the quantities Λ⋆
j defined as (Eq. (3.6))

Λ⋆
j = mj

√
µ0a

(0)
j . (4.5)

At the exact mean motion resonance (Eq. (4.4)), the semi-major axes do not precisely
verify a

(0)
1 = a

(0)
2 = (p/ (p + 1))2/3 a

(0)
3 . However, it is still possible to consider that the

exact resonance occurs at Λ̃j = Λ⋆
j , since Sect. 3.1.1 shows that the subsequent error is

negligible with respect to the width of the resonance.
To study the dynamics in the vicinity of the resonance, the Hamiltonian is expanded in

the neighbourhood of the Λ⋆
j . As justified in Sect. 3.1.1, if the expansion of the Keplerian

part is pushed up to the second order, then an expansion at order 0 in the perturbative
part is enough, and we limit ourselves to

ιHP (Λ̃j, λj, D̃j, ϖj) = ιHP (Λ⋆
j , λj, D̃j, ϖj). (4.6)

A suitable linear change of variables to deal with the p : p : p + 1 resonance chain is (e.g.
Delisle, 2017) 

ξ
ξ2
ξ3
σ1
σ2
σ3


=



1 −1 0 0 0 0
0 p −p 0 0 0
0 −p p + 1 0 0 0
0 −p p + 1 1 0 0
0 −p p + 1 0 1 0
0 −p p + 1 0 0 1





λ1
λ2
λ3

−ϖ1
−ϖ2
−ϖ3


, (4.7)

which is canonical if we transform the actions according to (Eq. (2.31))

(
Λ̃1, Λ̃2, Λ̃3, D̃j

)
7→
(
L′, Γ′, G′, D′

j

)
=
Λ̃1,

p + 1
p

(
Λ̃1 + Λ̃2

)
+ Λ̃3,

∑
j≤3

(
Λ̃j − D̃j

)
, D̃j

 .

Since the total angular momentum G′ is a first integral, the Hamiltonian does not depend
on the angle ξ3. Moreover, in the p : p : p+1 resonance, the angle ξ2 is fast circulating and
we average over it. As we showed in Sect. 2.2.2, averaging over ξ2 amounts in performing
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a canonical transformation1 that sends the dependency on ξ2 in a remainder of order ι2,
that we neglect. The averaged Hamiltonian reads

H ′
(
L′, Γ′, G′, ξ, D′

j, σj

)
= H ′

K

(
L′, Γ′, G′, D′

j

)
+ 1

2π

∫ 2π

0
ιH ′

P

(
ξ, ξ2, D′

j, σj

)
dξ2, (4.8)

where we did not write the neglected remainder. The transformation (4.7), along with the
averaging process, allows the two degrees of freedom associated with (Γ′, G′; ξ2, ξ3) to be
eliminated, and we are left with four degrees of freedom. After the averaging process, the
scaling parameter Γ′ and the angular momentum G′ are both parameters and a rescaling
by Γ′ reduces the dependency to only one parameter. As we study the effect of tidal
dissipation on the dynamics in Chap. 7, it is actually more convenient to normalize by
the constant (Eq. (4.5))

Γ⋆ = (p + 1) (Λ⋆
1 + Λ⋆

2) /p + Λ⋆
3 (4.9)

rather than by Γ′, which is not constant when dissipation is present. In other words, we
perform the canonical2 transformation

H = H ′

Γ⋆
, L = L′

Γ⋆
, G = G′

Γ⋆
, Γ = Γ′

Γ⋆
, Dj =

D′
j

Γ⋆
, Λj = Λ̃j

Γ⋆
, (4.10)

while the angles are unchanged.

4.1.2 Expansion of the Keplerian part
As we did in Chap. 3, we expand the Keplerian part of the Hamiltonian at second order
in the vicinity of the Λ⋆

j . If we denote ∆Λ̃j = Λ̃j − Λ⋆
j , the expansion reads

HK =
3∑

j=1
nj,0∆Λ̃j − 3

2

3∑
j=1

nj,0

Λ⋆
j

∆Λ̃2
j . (4.11)

Substituting Λ̃j − Λ⋆
j for ∆Λ̃j, we obtain

HK = 4
3∑

j=1
nj,0Λ̃j − 3

2

3∑
j=1

nj,0

Λ⋆
j

Λ̃2
j − 5

2

3∑
j=1

nj,0Λ⋆
j . (4.12)

The third term is constant and can be removed without changing the dynamics. In the
variables L, G, Γ and Dj, HK takes the form

HK = −3
2η

C1L
2 + C2 (p (Γ − Υ) − L)2 + C3p (p + 1)

(
Υ − pΓ

p + 1

)2
+ 4ηpΓ

p + 1 , (4.13)

where we denoted Υ = G + D1 + D2 + D3 = ∑
j Λj and Cj = Γ⋆/Λ⋆

j , that is

C1 =
(

p + 1
p

)1/3
m3

m1
+ p + 1

p

(
1 + m2

m1

)
,

C2 = m1

m2
C1, C3 = 1 +

(
p + 1

p

)2/3
m1 + m2

m3
.

(4.14)

1For convenience, we do not change the name of the variables.
2The Jacobian of this transformation is not symplectic, but the rescaling of the Hamiltonian guarantees

that the form of Eq. (2.19) is preserved.
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Without dissipation, Γ and G are both integrals of motion. Due to the normalization by
the constant Γ⋆, Γ is close to 1 and we simply evaluate HK at Γ = 1, hence achieving
the reduction to only one parameter. The relevant parameter to consider is Γ/G and the
variations of Γ are now3 absorbed by G (Eqs. (4.34) and (4.35)). The last term of Eq.
(4.13) is constant and can be removed from the Hamiltonian.

Instead of the variables L, G, and Γ, we can use the variables ∆L, ∆G, and ∆Γ defined
by their difference to the Keplerian resonance (4.5). In this case the approximation Γ = 1
becomes ∆Γ = 0 and Eq. (4.11) yields, once normalized,

HK = −3
2η
{(

p2C2 + p(p + 1)C3
)

∆Υ2 + 2pC2∆Υ∆L + (C1 + C2) ∆L2
}

, (4.15)

where ∆Υ = ∆G + D1 + D2 + D3 = ∑
j ∆Λj. We find the Hamiltonian (4.15) to be well

adapted to the analytical work derived in Sect. 4.3.1, while we use the Hamiltonian (4.13)
elsewhere. Moreover, we do not perform the evaluation Γ = 1 in Chap. 7, where we study
the resonance chain p : p : p + 1 in presence of tidal dissipation, making Γ a variable
quantity. Hamiltonians (4.13) & (4.15) both yield the same dynamics and using either is
only a matter of preference.

4.1.3 Expansion of the perturbative part
The perturbative part ιHP of the Hamiltonian is expanded in power series of the eccen-
tricities. To this end, we separate the contributions due to the interactions between each
pair of planets as

ιHP = H1,2 + H1,3 + H2,3. (4.16)

We denote Xj =
√

2D̃j/Λ̃j eiϖj = eje
iϖ + O

(
e3

j

)
. For a pair (p1, p2) ∈ {(1, 2) , (1, 3) , (2, 3)}

of planets, the Hamiltonian Hp1,p2 is given by Eq. (2.58). The d’Alembert rule (2.59),
combined with the average over ξ2 = pλ2 − pλ3, implies that H1,2 has no term of odd
degree in eccentricity, while H1,3 and H2,3 have no term of degree 0. Since we limit
ourselves to the second degree in eccentricity, we write

H1,2 = H(0) + H(2)
1,2, Hj,3 = H(1)

j,3 + H(2)
j,3 , (4.17)

where j ∈ {1, 2}. The superscript refers to the degree in eccentricity, while the subscript
refers to the considered pair of planets. The Hamiltonian H(0) has no subscript since only
the co-orbital pair yields terms of degree 0 and no confusion is possible. The part H1,2 of
the Hamiltonian was already computed in Chap. 3, and is given by Eq. (3.29). Using the
variables Dj and σj, and given the normalization (4.10), we can write

H(0) = m1

m0

η

C2

(
cos ξ − ∆−1

)
,

H(2)
1,2 = m1

m0

η

C2

{
Ah (C1D1 + C2D2) + 2

√
C1C2D1D2 Re

(
Bhei(σ2−σ1)

)}
,

(4.18)

where ∆ =
√

2 − 2 cos ξ. The coefficients Ah and Bh are given by Eq. (3.30), and the
Cj, that depends only on the planetary masses and on p, were defined by Eq. (4.14).

3After the evaluation Γ = 1, G is in fact G/Γ, but we abusively keep writing G.
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Following Laskar and Robutel (1995) and using the algebraic manipulator Trip (Gastineau
and Laskar, 2011), H(1)

j,3 and H(2)
j,3 can be written

H(1)
j,3 = mjn

(0)
3

m0C3

{
C

(1)
p,1

√
2CjDj cos (pδj,1ξ − σj) + C

(1)
p,2

√
2C3D3 cos (pδj,1ξ − σ3)

}
, (4.19)

and

H(2)
j,3 = 2mj

m0

n
(0)
3

C3

{
C

(2)
p,1CjDj cos (2pδj,1ξ − 2σj) + C

(2)
p,2C3D3 cos (2pδj,1ξ − 2σ3)

+ C
(2)
p,3

√
CjC3DjD3 cos (2pδj,1ξ − σj − σ3)

+ C
(2)
p,4 (CjDj + C3D3) + C

(2)
p,5

√
CjDjC3D3 cos (σj − σ3)

}
,

(4.20)

where δj,1 = 1 if j = 1 and zero if j = 2. The quantities C(n)
p,m depend only on p and can

be obtained using the Laplace coefficients. For p = 1, their analytical expressions, as
well as a numerical evaluation, is given in Eqs. (B.2) & (B.3) of Appendix B. The final
Hamiltonian of the model is then

H(L, Dj; ξ, σj) = HK + H(0) + H(1)
1,3 + H(1)

2,3 + H(2)
1,2 + H(2)

1,3 + H(2)
2,3. (4.21)

As opposition to the complete Hamiltonian of Eq. (4.2), we refer to Eq. (4.21) as the
simplified Hamiltonian, or as the model. We recall the three simplifications that led from
Eq. (4.2) to Eq. (4.21)

• Average over the angle λ2 − λ3, that is, Lie serie expansion at first order in ι, while
ignoring the associated near-identity change of variables (see Sect. 2.2.2).

• Expansion at second order in eccentricity.

• Expansion of the semimajor axes in the neighbourhood of Eq. (4.5), at second order
for HK , and at the zeroth order for ιHP .

We denote F0 : R8 7→ R8 the vector field derived from Eq. (4.21) by the Hamilton Eqs.
(2.18).

4.2 Important theoretical results on resonance chains

4.2.1 From fixed points to libration centres
As we will see in Sect. 4.3.2, the model (4.21) has equilibria, that is, points in the phase
space where the vector field F0 vanishes. At a fixed point (or equilibrium) of the model,
L and Dj are constant and so are ej and aj. Similarly, the angles σj and ξ are constant;
that is, there exists constants cj such that

σj = −pλ2 + (p + 1) λ3 − ϖj = cj. (4.22)

However, the secular angle ξ3 = −pλ2 + (p + 1) λ3 and the pericentres ϖj are not constant
at the equilibria, but they all precess with the same frequency, which we denote ν3.
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Even though the model has equilibria, the complete Hamiltonian (4.2) has none, since
no initial condition in the n-body problem leads to the immobility of the system. The
canonical change of variable that we ignored, inherent to the Lie serie expansion, explains
the inconsistency. Indeed, as is explained in Sect. 2.2.2, the average over the angle ξ2 in
Eq. (4.8) is in fact a near-identity canonical transformation that allows the dependency
on that angle to be pushed to the neglected second order in ι. As a consequence, the
simplified Hamiltonian H (Eq. (4.21)) does not depend on x = t (L, Γ, G, Dj; ξ, ξ2, ξ3, σj),
but rather on x̌ = t

(
Ľ, Γ̌, Ǧ, Ďj; ξ̌, ξ̌2, ξ̌3, σ̌j

)
, where (Eq. (2.63))

x̌ = Φιχ(−1, x) = e−ιLχx. (4.23)

Equations. (2.67) to (2.70) show that the transformation Φιχ(−1, ·) is quasiperiodic with
vector of frequencies ω0 = ∂HK/∂J , where J = t (L, Γ, G, D1, D2, D3). Furthermore, at
an equilibrium of the model, because x̌ is constant, the Fourier decomposition of χ in Eq.
(2.69) only depends on the frequencies ν2 and ν3, with

ν2 = ξ̇2 = ∂H
∂Γ and ν3 = ξ̇3 = ∂H

∂G
= ∂H

∂Υ , (4.24)

where these quantities are evaluated at the equilibrium. This means that at an equilibrium
of the model (4.21), the transformation x̌ 7→ x is quasiperiodic with frequencies ν2 and
ν3, and so is x. More precisely, x is periodic with frequency ν2, in a frame rotating with
the pericentres ϖj at frequency ν3. Furthermore, for a quantity invariant around the axis
of total angular momentum, like ξ or the σj, the Fourier decomposition does not feature
ν3, and the motion of x in the complete Hamiltonian (4.2) is periodic with frequency ν2.

In other words, the motion of a quantity z depending on x, along the flow of the
complete Hamiltonian (Eq. (4.2)), using an equilibrium of the simplified Hamiltonian (Eq.
(4.21)) as initial condition, is

• Periodic with frequency ν2 if z is invariant by the angle translation (λj, ϖj) 7→
(λj + ϑ, ϖj + ϑ), where ϑ is any constant angle.

• Quasiperiodic with frequencies ν2 and ν3 if z is not invariant by this angle translation.

Given the general change of variables proposed by Eq. (A.1) of Delisle (2017), it is easy
to notice that this result is true for any chain of resonances. In the rest of this work, what
is known as a fixed point or equilibrium for the model is referred to as a libration centre
in the complete system.

4.2.2 An algorithm to find the libration centres
According to Sect. 4.2.1, the equilibria of the simplified Hamiltonian (Eq. (4.21)),
should correspond to points in the phase space where, along the flow of the complete
Hamiltonian (Eq. (4.2)), the motion of a quantity z invariant by rotation and depending
on x = t (L, Γ, G, Dj; ξ, ξ2, ξ3, σj), is periodic with frequency ν2. However, due to the
expansion of the Hamiltonian in eccentricities and semimajor axes, the libration centres of
the complete Hamiltonian do not coincide with the equilibria of the model. We develop
here an iterative algorithm, similar to that in Couetdic et al. (2010), to find a libration
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Fig. 4.1 — Trajectories of ejeiσj in the complete Hamiltonian (4.2) for the six iterations needed
for the algorithm to converge to the libration centre. Iteration 0 is an elliptic equilibrium4of
the simplified Hamiltonian (4.21). It is rather far from the libration centre of the complete
Hamiltonian (see also Fig. 4.4). After six iterations, the algorithm converges to the libration
centre and the motion is periodic (hence the closed curves) with frequency ν2 (Sect. 4.2.1). The
planetary masses are those of Fig. 4.2 and the resonance chain is 1 : 1 : 2.

centre of the complete Hamiltonian using an equilibrium of the simplified Hamiltonian as
initial condition.

We assume, close enough to a libration centre of the complete Hamiltonian (4.2), that
the trajectories are quasiperiodic, and we write, for any complex quantity z depending on
these trajectories,

z (t) =
∑

k∈Z6

zkeik·ωt, (4.25)

where the coordinates of the vector ω = t (ν, ν2, ν3, g1, g2, g3) are the fundamental frequen-
cies of the complete Hamiltonian (4.2). The frequencies ν, ν2, and ν3 have approximate
values given by Eqs. (4.39), (4.24), and (4.30), respectively. The description of the
algorithm is as follows:

• Find the position of an elliptic equilibrium of the simplified Hamiltonian (4.21) with
a Newton-Raphson method. Use it as the initial condition to integrate numerically
the trajectories of the complete Hamiltonian (4.2).

• For a complex quantity z depending on the trajectories of (4.2), obtain the decom-
position (4.25) using a frequency analysis method (e.g. Laskar, 1993).

4It is the main branch, introduced in Sect. 4.3.1, at δ = 5 (see Eq. (4.34)).
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• Identify the terms depending on frequencies other than ν2 and set to 0 the corre-
sponding coefficient zk.

• Proceed similarly for enough quantities z and evaluate them at time t = 0 in order
to obtain a new initial condition. Restart from the first step using the new initial
condition instead of the equilibrium of (4.21).

The process is iterated until a convergence occurs. In Fig. 4.1, we display the trajectories
of the quantities eje

iσj in the plane (ej cos σj, ej sin σj) as the algorithm iterates. Isolating
terms featuring frequencies other than ν2 is difficult, if not impossible, since the frequency
analysis gives the scalars k · ω but not the vector k, which cannot be deduced as the
vector ω is unknown for the complete Hamiltonian. We can get around this difficulty
because ν2 is much larger than the other frequencies, hence it is easy to isolate terms that
depend on ν2 from those that do not. The implementation is thus simplified by setting
to 0 the coefficients zk of the terms that do not depend on ν2, instead of setting to 0
the coefficients zk of the terms that depends on frequencies other than ν2. This does not
prevent the algorithm from properly converging.

4.3 Equilibria and linearization
In this section we study the equilibria of the resonance p : p : p + 1 and the dynamics in
their vicinity.

4.3.1 Analytical results
The fixed points of the Hamiltonian (4.21) cannot be given analytically, even if it is
truncated at first degree in eccentricity. Similar difficulties were met by Delisle (2017) for
resonance chains with first-order resonances between non-consecutive planets. However,
we show here that further simplifications allow us to obtain analytical expressions of
the equilibria and of the eigenvalues of the linearized system. In this subsection, we
consider the Hamiltonian H = HK + H(0) + H(1), that is, the Hamiltonian of Eq. (4.21),
where the terms of second order in eccentricity (those featuring the superscript (2)) have
been removed. The Hamiltonian HK + H(0) + H(1) is only a small perturbation of the
Hamiltonian HK + H(0), studied in Sect. 3.2.1, which has equilibria at ξ ∈ {±π/3, π}.
The equilibrium at ξ = π is unstable and we are not interested in its dynamics. Only the
equilibria ξ = ±π/3 are interesting to us, and since their dynamics are symmetric, it is
enough to only consider ξ = π/3.

To further simplify the Hamiltonian, we force a decoupling between the degree of
freedom (ξ, ∆L) associated with the libration of the co-orbitals and the three other degrees
of freedom (σj, Dj). We proceed in two steps :

• We first evaluate H(1) = H(1)
1,3 + H(1)

2,3 at ξ = π/3, meaning that H(1) loses its
dependency on ξ.

• We then replace the variable ∆L by the constant ∆L⋆ in the anti-diagonal term5 of
HK in (4.15), where ∆L⋆ is the value of ∆L for which ∂HK/∂∆L vanishes, that is

5The term proportional to ∆L∆Υ
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∆L⋆ = − pC2

C1 + C2
(∆G + D1,0 + D2,0 + D3,0) . (4.26)

The Dj,0 are given by Eq. (4.29). While the evaluation at ξ = π/3 allows analytical
expressions for the position of the fixed points, the evaluation at ∆L = ∆L⋆ uncouples
(ξ, ∆L) from (σj, Dj) and enables analytical expressions of the eigenvalues of the linearized
system in the vicinity of the fixed points. The differential system derived from HK +
H(0) + H(1), after these simplifications have been performed, is given in Appendix C. It
vanishes when the angles are equal to

ξ0 = π

3 , σ1,0 = p
π

3 + ϵπ, σ2,0 = ϵπ, σ3,0 = arctan m1 sin pξ0

m2 + m1 cos pξ0
+ (1 − ϵ) π, (4.27)

where6

ϵ =
0 if ν3 < 0,

1 if ν3 > 0,
(4.28)

and when the actions are equal to7

C1D1,0 = C2D2,0,
D3,0

D1,0
=

C3C
(1)
p,2

2
H2

C1C
(1)
p,1

2 , ∆L0 = 0 and

C1C
(1)
p,1

2
m2

1p
2

2C2
3m2

0 (p + 1)2 =
(

ν3

η

)2

D1,0

(4.29)

where the precession frequency of the pericentres is

ν3 = −ηK (∆G + D1,0 + D2,0 + D3,0) , K = 3p2C1C2

C1 + C2
+ 3p (p + 1) C3, (4.30)

and we define the constant H by

H = cos (pξ0 − σ3,0) + m2

m1
cos σ3,0. (4.31)

The unknowns quantities of Eq. (4.29) are the Dj,0, and since the ratios D2,0/D1,0
and D3,0/D1,0 are known, we are reduced to the unique unknown quantity D1,0. The
precession frequency of the pericentres, ν3, depends on D1,0 (see Eq. (4.30)). Denoting
C = 1 + D2,0/D1,0 + D3,0/D1,0 and performing the translation Z = D1,0 + 2∆G/3C, we
can rewrite Eq. (4.29) as a third-degree polynomial in Z

Z3 − PZ − Q = 0,

where P = ∆G2

3C2 and Q = 2∆G3

27C3 +
C1C

(1)
p,1

2
m2

1p
2

2C2C2
3K2m2

0 (p + 1)2 .
(4.32)

The coefficients P and Q of this polynomial depend on the parameter ∆G, that we
properly define in Eq. (4.35). There is a bifurcation between 1 and 3 real solutions when
27Q2 − 4P 3 = 0 (Cardano, 1545), that is at

∆G = ∆Gbif = −

 27C1C
(1)
p,1

2
p2Cm2

1

8C2
3K2m2

0 (p + 1)2

1/3

. (4.33)

6An analytical expression for ν3 is given by Eq. (4.30).
7C1D1,0 = C2D2,0 yields e1,0 = e2,0 since ej =

√
2CjDj .



48 Chapter 4. Co-orbital planets in a planar first-order resonance chain

Fig. 4.2 — Values of the eccentricities and fundamental frequencies given by the analytical
results. Left: Value of e1 at the fixed points of the resonance chain 1 : 1 : 2 as predicted by
Eq. (4.32). Right: Values of ν/η and ν3/η along the main branch as a function of δ, for the
same resonance chain, predicted by Eqs. (4.39) and (4.30). In both panels the planetary masses
are (m1 + m2) /2 = m3 = 10−4 m0 and m2/m1 = 10. According to Eq. (4.29), e1 = e2, and for
this choice of masses and resonance chain e3/e1 = 0.5471. In Table 4.1, which gathers the fixed
points at second order in eccentricity, the three branches visible in the left plot are branches 1
(main branch), 2, and 6. The secular resonances between ν and ν3 are shown on the right, and
are also easy to spot in Fig. 4.6.

In the rest of this work we use the parameter

δ = ∆G/∆Gbif, (4.34)

where
∆G = G′

Γ′ − G⋆

Γ⋆
= G

Γ −
∑

j Λ⋆
j

Γ⋆
= G

Γ −
3∑

j=1
C−1

j . (4.35)

In this chapter, Γ = Γ′/Γ⋆ ≈ 1 is simply evaluated at 1 and ignored, but not in Chap.
7, where tidal dissipation induces a drift in Γ, hence in δ. The normalisation by ∆Gbif
ensures that the bifurcation is at δ = 1, regardless of the planetary masses.

The forced decoupling that we performed to obtain these expressions leads to results
that are very similar to the second fundamental model of resonance proposed by Henrard
and Lemaitre (1983). The fixed points are given by the roots of the third-degree polynomial
in Z (4.32), which has one or three real solutions depending on δ, hence a bifurcation.
The solutions of Eq. (4.32) are plotted in Fig. 4.2. For δ < 1, only one elliptic equilibrium
exists, called the main branch, while for δ ≥ 1 two other fixed points appear, one of them
being hyperbolic, hence the presence of separatrices in the phase space and the formal
existence of a resonance. These results come from a strong hypothesis, and we see in Sect.
4.3.2 that the topology of the Hamiltonian (4.21) is different (see Table 4.1). However, we
show in Fig. 4.3 that these analytical expressions are accurate for low eccentricities.

We now linearize the set of Eqs. (C.1) in the vicinity of the main branch. We make
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use of the cartesian coordinates

uj =
√

2Dj cos σj and vj =
√

2Dj sin σj, (4.36)

and denoting X = t (u1, u2, u3, v1, v2, v3, ∆L, ξ), the linearized system is

d∆X

dt
=
(

Q6 06,2
02,6 Q2

)
∆X, where ∆X = X − X0,

Q2 =

 0 9m1

4m0
ηC−1

2

−3η (C1 + C2) 0

 ,

(4.37)

and X0 is the equilibrium value of X. The matrix Q6 is given by Eq. C.4. Its characteristic
polynomial reads

det (λI6 − Q6) =
(
λ2 + ν2

3

)2
λ2 + ν2

3 − 2ν3I
3∑

j=1
Dj,0

 , (4.38)

where the constant I is defined in Eq. (C.3). It is interesting to note that the precession
frequency of the pericentres, ±iν3, is an eigenvalue of the differential system (4.37). This
factorisation was already noted by Pucacco (2021), who studied the resonance chain
1 : 2 : 4 of the Galilean satellites, although it was not attributed to the precession of the
pericentres (see their Eq. (109)). The eigenvalues of Q2 are ±iν, where ν is given by Eq.
(3.32)

ν = η

√
27
4

m1 + m2

m0
. (4.39)

We recall that ν is the libration frequency of the angle ξ in the neighbourhood of the
equilateral Lagrangian configuration. Figures 4.2 and 4.5 show that ν3 < 0 for the
main branch, which ensures that the roots of (4.38) are pure imaginary. Evaluating the
eigenvalues ±iν and ±iν3 in the vicinity of the main branch shows that, at δ ≈ −5.6
for the planetary masses in Fig. 4.2, all these eigenvalues have roughly the same value,
yielding a 1 : 1 secular resonance between the libration frequency of the co-orbitals and
the precession frequency of the pericentres. Other secular resonances between ν and ν3
are shown in Fig. 4.2, and are also very visible on the stability map from Fig. 4.6. We
show in Sect. 7.2.2 that the secular resonance 1 : 1 has important consequences for the
tidal stability of the co-orbital pair.

4.3.2 Numerical results
In the previous section, strong approximations allowed the equilibria and eigenvalues of
the model to be given analytically. We now develop a Newton–Raphson-based algorithm
to numerically and exactly find the equilibria of the Hamiltonian (4.21) and compare
them with the analytical approximations elaborated in Sect. 4.3.1.

The Newton–Raphson algorithm finds equilibria by starting from a random initial
condition in the phase space, and we discretize it by exploring a grid in the parallelepiped
defined by |uj| < 0.08 and |vj| < 0.08 (recall that e2

j = Cj(u2
j +v2

j )). In order to pretend to
have found all possible equilibria, it is necessary that the discretization is thin, or in other
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100 e1 100 e2 100 e3 σ1 (◦) σ2 (◦) σ3 (◦) L − 0.0345 ξ (◦) nature domain
1 4.449 7.490 5.878 ±14.433 ±22.572 ∓92.014 6.461e−5 ±59.760 elliptic δ ∈ R
2 0.168 0.165 0.093 ∓119.18 ±179.92 ±4.6606 19.34e−5 ±60.003 δ-dependent δ > 1.129
3 5.201 7.645 5.470 ±14.216 ∓15.688 ±95.525 6.483e−5 ±59.806 elliptic δ > 5.997
4 8.344 8.646 0.305 180 0 0 6.501e−5 180 hyperbolic δ ∈ R
5 7.939 7.180 5.922 ∓151.76 ∓20.944 ±92.729 6.439e−5 ±179.13 hyperbolic δ > 4.195
6 10.11 6.330 6.246 ∓102.00 ±177.92 ±4.3287 7.200e−5 ±62.538 hyperbolic δ > 1.129
7 6.009 8.721 1.696 ±6.8311 ∓1.8178 ±86.449 6.518e−5 ±59.710 hyperbolic δ > 5.999
8 0.164 0.165 0.079 0 180 0 19.34e−5 180 hyperbolic δ > 1.082
9 3.708 6.584 6.887 0 180 0 7.157e−5 180 hyperbolic δ > 1.082

Table 4.1 — The 15 equilibria of the simplified Hamiltonian (4.21). They are found for the
resonance chain 1 : 1 : 2 at δ = 7 using a Newton–Raphson method. Values given without
decimal places are exact. The planetary masses are as in Fig. 4.2. Branch 2 is hyperbolic only
for 5.548 ≤ δ ≤ 5.802 and elliptic elsewhere. The entry value of δ in the formal resonance (here
1.129) weakly depends on the planetary masses because of the normalisation by ∆Gbif (It occurs
at δ = 1 in the analytical results of Sect. 4.3.1). Branch 1 is the only elliptic branch existing for
all values of δ and it is the main branch introduced in Sect. 4.3.1. It corresponds to the only real
solution of Eq. (4.32) when δ < 1. Branches 3, 5, and 7 do not exist at first order in eccentricity,
while they exist at second order; hence, we cannot exclude that the complete Hamiltonian (4.2)
has more libration centres, either because we did not discretize the phase space thinly enough to
find them or because they do not exist at second order in eccentricity.

words, that the grid is dense. However, since the phase space has eight dimensions, a thin
discretization leads to too many initial conditions, and to limit the computational time,
we are only able to discretize the axes uj and vj with eight points, evenly distributed in
the range [−0.08, 0.08]. Since the semimajor axes stay close to their Keplerian value, the
L-axis is discretized with the unique point L0 = L⋆ := Λ⋆

1/Γ⋆, which corresponds to the
value of L at the Keplerian resonance (Eq. (4.5)). Similarly, because the model (4.21) is
only a perturbation of HK + H(0), its equilibria are expected to be close to ξ0 ∈ {±π/3, π}
(see Fig. 3.1) and the ξ-axis is discretized with these three points only. The algorithm
hence explores a grid composed of 3 × 86 points in the phase space.

For δ = 7, all 786 432 initial conditions of the Newton–Raphson method converged
towards 15 distinct equilibria. The vector field F0 derived from the Hamiltonian (4.21)
depends on the choice of the parameter δ (through ∆G), and once a fixed point is found
for a particular value of δ, we repeat the Newton-Raphson algorithm for slowly varying
values of δ in order to travel along the whole branch. In Table 4.1, we display the
15 found equilibria, their hyperbolic or elliptic nature, and the value of δ that gives
birth to the branch. Since the Hamiltonian (4.21) is invariant by the transformation
(ξ, σj) 7→ (−ξ, −σj), fixed points with values of the angles different from 0 or π have
a symmetric, hence the ± and ∓ signs in Table 4.1 (the upper sign corresponds to a
fixed point and the lower sign to its symmetric). This symmetry corresponds to the
invariance of the system by a rotation of angle π around an axis normal to the total
angular momentum.

As can be seen in Table 4.1, only the branches 1, 2, and 3 of fixed points can be
elliptic, and thus we focus only on them in the rest of this work. In Fig. 4.3 we plot
these branches for values of δ ranging from −2 to 9. For branches 1 and 2, which are
predicted by the first order in eccentricity, we also plot them as given by Eqs. (4.27)
and (4.32), for comparison. This section shows how the analytical results are unable
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Fig. 4.3 — Position of the elliptic branches 1, 2, and 3 (see Table 4.1) of equilibria of the
Hamiltonian (4.21) in the resonance 1 : 1 : 2, for −2 ≤ δ ≤ 9. For each branch three curves
appear, corresponding to ejeiσj for j = 1, 2, 3. The planetary masses are the same as in Fig. 4.2.
A zoomed-in image close to the origin is shown in the inset. In this area, the analytical position
of these equilibria, given by Eqs. (4.27) and (4.32), is plotted by thin grey lines. The agreement
is good at low values of eccentricity, but quickly worsens further from the origin. In particular,
the thin grey lines are straight since σj does not depend on δ in Eq. (4.27). Branch 1 exists
for all values of δ and has all colours from yellow to dark purple, while branch 3 only exists at
δ > 5.997 and thus only has purple.

to locate the equilibria of the model (4.21) for ej ≳ 0.005 (see Fig. 4.3) and does not
even give its topology for ej ≳ 0.05 (branches 3, 5, and 7 do not exist at first order in
eccentricity; see Table 4.1). This discrepancy between first and second order in eccentricity
was already mentioned by Beaugé et al. (2006) in the case of the two-planet 1 : 2 mean
motion resonance.

4.4 Comparison with the unaveraged system

4.4.1 Fixed points versus libration centres
As previously justified, the libration centres of the complete Hamiltonian (4.2) (Sect. 4.2.1)
do not coincide with the equilibria of the model (4.21). We use the algorithm described
in Sect. 4.2.2 to locate the libration centres of the complete system and compare them
with the equilibria of the model. Since this algorithm is only able to find libration centres
associated with elliptic fixed points, we locate the branches of libration centres associated
with branches 1, 2, and 3 of Table 4.1. We confirm the existence of a small hyperbolic
zone for branch 2 in the complete Hamiltonian when the algorithm stops converging as it
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Fig. 4.4 — Position of branch 1 of elliptic libration centres of the complete Hamiltonian (4.2) in
the resonance 1 : 1 : 2 for −7 ≤ δ ≤ 7. The planetary masses are the same as in Fig. 4.2. As a
comparison, branch 1 of equilibria of the simplified Hamiltonian (4.21) is plotted in grey for the
same range in δ. For small enough values of δ the eccentricity is not too high and the agreement
is good. Then, the simplified and the complete Hamiltonian diverge when δ → +∞.

travels along the branch (by slowly incrementing the value of δ). We plot in Fig. 4.4 the
main branch (branch 1) of the libration centres of the complete Hamiltonian (4.2) and we
compare it with the main branch of equilibria of the simplified Hamiltonian (4.21). In
order not to overload the figure, only branch 1 is plotted. It is also the most interesting
branch when tidal dissipation is involved (see section 7.2).

In Fig. 4.5 we plot the precession frequency of the pericentres, ν3, for the main branch
of the libration centres, and we compare it with the analytical expression (4.30). This
figure shows that, for high values of δ, n1/n3 tends towards (p + 1) /p (which is equal to 2
in this case). For small values of δ though, this ratio diverges from its nominal value and
libration centres at small values of δ are far from the Keplerian resonance. For branch 1,
we now refer to very negative values of δ as far from the resonance and to very positive
values of δ as deep in the resonance. The value of ν3 in the complete Hamiltonian is
obtained from the frequency analysis of eiξ3 , once the libration centre is known.

4.4.2 A stability map of the p : p : p + 1 resonance chain
Before taking into account tidal dissipation in the model, we study the stability of the
point-mass p : p : p + 1 resonance chain by constructing a dynamical map using the
frequency analysis method to determine the chaoticity of a given orbit (Laskar, 1990).
More precisely, we study the stability of the chain along its main branch (see Fig. 4.2)
between δ = 7, deep in the resonance, and δ = −7, outside the resonance.

For each value of δ, we compute the position of the exact libration centre by means
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Fig. 4.5 — ν3/η as a function of δ, in the complete Hamiltonian, for the resonance chain 1 : 1 : 2,
along branch 1 of the libration centres in Fig. 4.4. The analytical expression (4.30) is plotted
in grey for comparison. The colour gives the value of n1/n3. As expected from Eqs. (4.30) &
(4.34), ν3 is proportionnal to δ far from the resonance, where the eccentricities are small.

of the algorithm described in Sect. 4.2.2, and we choose an initial value for the angle ξ
between its equilibrium value (near 60◦) and the value at the boundary between tadpole
and horseshoe-shaped orbits (close to 24◦, see Robutel and Pousse, 2013). For values of
ξ0 close to 60◦, the considered orbit is close to the main branch and it moves away for
decreasing values of ξ0. For all other variables, we choose as the initial condition the value
at the libration centre. Every trajectory (i.e. every choice of δ and ξ0) is integrated over
80 000 periods of the co-orbital planets, and for each half of the simulation the exact value
of the libration frequency ν is extracted from the frequency analysis of eiξ. We obtain two
values of ν, namely ν(1) for the first half of 40 000 periods and ν(2) for the second half.
The diffusion index, defined as (Robutel and Gabern, 2006)

ζν = log10

∣∣∣∣∣ν(1) − ν(2)

ν(1)

∣∣∣∣∣ , (4.40)

measures the degree of quasi-periodicity of the orbit. Orbits with ζν < −6 are considered
close to be quasi-periodic (stable), while orbits with ζν > −2 are very chaotic (unstable).
We plot the stability map for the resonance chain 1 : 1 : 2 in Fig. 4.6. Secular resonances
between ν and ν3, already predicted by the analytical results in Fig. 4.2 are visible and
induce chaotic motion. Overall, this stability map shows that the chain p : p : p + 1 is
mainly stable.

4.5 Conclusion
In this chapter, we have studied the dynamics of a pair of co-orbital planets in the presence
of a first-order mean motion resonance with a third planet orbiting outside the co-orbitals.
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Figure 4.6 — Diffusion index ζν as a function of δ and ξ0. The planetary masses are as in
Fig. 4.2 and the chain is 1 : 1 : 2. The top of the figure, at ξ0 ≈ 60◦, is the main branch.
The blue-to-green regions are almost quasi-periodic (stable), while the red regions are chaotic
(unstable). The secular resonances between the libration frequency ν and the precession frequency
of the pericentres ν3, predicted by the analytical results (see Fig. 4.2), are visible, especially
the resonance 1 : 1, which can lead to chaotic orbits for high enough values of the libration
amplitude. The horseshoe-shaped orbits at the bottom are mostly chaotic, as expected, since
m1 + m2 = 2 × 10−4 is close to the limit 3 × 10−4 of their existence (Leleu et al., 2015). The
main branch around the 1 : 1 resonance between ν and ν3 is tidally attractive (see Fig. 7.1).
Systems undergoing tides entering this zone can either converge towards the top of the figure or
become completely chaotic.

We built an averaged model (Eq. (4.21)) from which we were able to analytically retrieve
the equilibria of the system and the eigenvalues in their vicinity. With these analytical
results, we showed that the resonance chain p : p : p + 1 has some similarities with the
two-planet second fundamental model of resonance of Henrard and Lemaitre (1983), as
well as some other proper characteristics, like the existence of a secular 1 : 1 resonance
between the libration frequency of the co-orbitals and the precession frequency of the
pericentres, that can lead to chaotic orbits.

The analytical expressions came from strong assumptions, and we have compared
them with numerical results, obtained after all simplifications were removed. This allowed
us to reach the conclusion that the analytical expressions were correct, for eccentricities
less than 0.005. We have shown that the resonance chain p : p : p + 1 possesses many
families of equilibria, some of them being stable. We also formally studied the relation
between the equilibria of the averaged model and the libration centres of the unaveraged,
complete problem, and we have checked the ability of our model to predict the location of
the libration centres of the system, by means of a dedicated algorithm.



Chapter 5

Main theory on tidal dissipation

This chapter aims to establish the main theory of tides, that we use in Chaps. 6 and 7.

5.1 Tidal potentials
Celestial bodies are not perfectly rigid and the differential gravitational interactions
between them give rise to inelastic deformations and distortions, leading to dissipation of
energy by heating up. This energy loss modifies their spins and orbits and it is important
to have a satisfying tidal description to study the long term dynamics of planetary systems.
Our current mathematical understanding of tidal mechanisms comes from a very general
formulation initiated by Darwin (1880). We consider in this chapter an extended body B
of barycentre O and mean radius R0 upon which tides are raised.

5.1.1 The perturbing potential
Tides arise when a celestial body, referred to as perturbing body, orbits in space around
B. We note r̃ the position of the perturbing body with respect to O. If r is the position,
with respect to O, of a point within B, this point undergoes from the perturbing body
the potential per unit mass

W (r) = − Gm̃

|r − r̃|
= −Gm̃

r̃

+∞∑
l=0

(
r

r̃

)l

Pl(cos S), (5.1)

where m̃ is the mass of the perturbing body, S is the angle between r and r̃ and the Pl

are the Legendre polynomials, whose definition is recalled in appendix A. Tides are due to
the differential acceleration caused by W within B, which means that the first two terms
of the perturbing potential, those corresponding to l = 0 and l = 1, do not contribute to
the deformation of B. Indeed, their gradient complies with

∇
(Gm̃

r̃

(
1 + r · r̃

r̃2

))
= Gm̃r̃

r̃3 , (5.2)
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and these terms are merely responsible for the orbital motion of B around the perturbing
body. Hence we redefine the perturbing potential as

W (r) = −Gm̃

r̃

+∞∑
l=2

(
r

r̃

)l

Pl(cos S). (5.3)

In most practical cases, r ≪ r̃, and only the term l = 2 is retained

W (r) = −Gm̃r2

r̃3 P2(cos S). (5.4)

5.1.2 Perturbed potential and definition of the Love numbers
In order to study the evolution of a planetary system undergoing tidal dissipation, we
need to establish a relation between the perturbing potential W (r, t) and the perturbed
potential V (r, t), that is, the potential raised by the redistribution of mass inside B.
Generally, the auto-gravitation is the main contribution to the equilibrium figure of a
body, and tides raised by other bodies of the system act as tiny perturbations. Thus, it is
safe to assume that V responds linearly to W and we write V = K(W ), where K is a
linear operator. Furthermore, V (r, t) should a priori depend on the value of W at any
point in space and at any time prior to t. To account for this and for the linearity, we
express V (r, t) as the convolution product (Boué et al., 2019)

V (r, t) =
∫ t

−∞

∫
R3

k(r, r′, t − t′)W (r′, t′)dr′dt′. (5.5)

The integration over space can be restricted to the volume of B, and in fact, when B is
incompressible, it can even be restricted to any sphere encircling completely the body B1.
For simplicity, we choose a sphere S, centered on O, and of radius R slightly larger than
R0, as to ensure that B is entirely inside of S. Thus, we write

V (R, σ, t) =
∫ t

−∞

∫
S

k(R, σ, σ′, t − t′)W (R, σ′, t′)dσ′dt′, (5.6)

where σ = (θ, φ) are the colatitude and longitude and dσ = sin θ dθ dφ. We now decompose
V and W over the spherical harmonics (Appendix A.1), that is

V (R, σ, t) =
+∞∑
l=0

l∑
m=−l

Vlm(R, t)Ylm(σ),

W (R, σ′, t′) =
+∞∑
l′=2

l′∑
m′=−l′

Wl′m′(R, t′)Yl′m′(σ′),
(5.7)

where l′ starts at 2, as in Eq. (5.3). When B is isotropic, the coefficients of the decompo-
sition verify a relation similar to Eq. (5.6), namely

Vlm(R, t) =
∫ t

−∞
klm(R, t − t′)Wlm(R, t′)dt′. (5.8)

1This comes from the general solution of the Laplace equation in spherical coordinates (Eq. (A.11)),
that forces the form of W everywhere inside the sphere, once W is known on the surface of the sphere.
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The demonstration of Eq. (5.8) (Boué et al., 2019) is given in appendix A.3, while we
recall the definition of Ylm in appendix A.1. In this equation, the Love numbers klm

depend on the arbitrary radius R and we would like to define more general Love numbers.
According to the Poisson equation, we have ∆V = 0 everywhere outside of B and ∆W = 0
everywhere in space (expect inside the body responsible for the tides). Since V and W do
not diverge at O and at infinity, we can deduce, from the general solution of the Laplace
equation ∆ = 0 in spherical coordinates (Eq. (A.11)), that

Vlm(R, t) ∝ R−(l+1) and Wlm(R, t) ∝ Rl, (5.9)

in the vicinity of S. As a consequence, we have

klm(R, t) ∝ R−(2l+1), (5.10)

and we redefine the Love numbers as

klm(t) =
(

R

R0

)2l+1
klm(R, t). (5.11)

We also redefine the coefficients Vlm with an equation similar to (5.8)

Vlm(t) =
∫ t

−∞
klm(t − t′)Wlm(R0, t′)dt′, (5.12)

which yields, for r ≥ R

V (r, σ, t) =
+∞∑
l=2

(
R0

r

)l+1 l∑
m=−l

Vlm(t)Ylm(σ). (5.13)

Equations (5.12) and (5.13) give the final form of the perturbed potential, as a function
of the perturbing potential. To give an expression for V , the Love numbers klm(t) need
to be known. Choosing a particular tidal model is equivalent to choosing a particular
expression for the klm(t). The convolution product (5.12) can be conveniently written in
the frequency domain

V̂lm(η) = k̂lm(η)Ŵlm(R0, η), (5.14)

where f̂ denotes the Fourier transform of f . In the rest of this manuscript, we drop the
hat to denote the Fourier transform. In general, R0/r is much smaller than unity and
the serie (5.13) is truncated at l = 2, which means that the knowlegde of k2m(t), for
−2 ≤ m ≤ 2, is enough. Furthermore, the dependency on m is artificial, since there exists
integers p and q such that k2m(η) = k20(pn + qω), where ω and n are the rotation rate
and mean motion of the perturbed body (around the perturbing body), respectively (e.g.
Correia and Laskar, 2003, Sect. 2.1). Only the second Love number k2(t) := k20(t) is thus
needed to define a tidal model.

5.2 Simple rheologies and subsequent tidal models
In order to define a tidal model, we need to obtain an expression for the Love number
k2 (t). The idea is to consider a case where the perturbing potential W and the perturbed
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potential V are both independently known and to use Eq. (5.14) to deduce the klm. Since
these numbers depend on the considered body, but not on the choice of potential, this
method allows us to determine them in a convenient way.

We consider for W the potential generated by the own rotation of B. This rotation is
responsible for an equatorial bulge whose associated potential is V . These potentials are
axisymmetric and the coefficients of their decomposition (5.7) will verify Wlm = Vlm = 0 for
m ̸= 0. Hence, the decomposition in the spherical harmonics will conveniently feature only
the Legendre polynomials Pl, since Yl0 ∝ Pl (appendix A). Besides being axisymmetric,
V and W are also independent of time, which means that V depends on W only at
present time. Given the form of Eq. (5.12), this implies k2(t) ∝ δ(t) where δ is Dirac’s
distribution. This choice for the potentials implies a frequency of excitation zero, and we
will only retrieve the value of the Love number k2 at frequency η = 0. Indeed, k2(t) ∝ δ(t)
yields k2(η) = Cstant = k2(η = 0). To obtain the true dependency of k2 on the frequency,
potentials more general than V and W need to be chosen. In Sect. 5.2.2, we present the
general method to retrieve the dependency on η.

5.2.1 The elastic body
In this section, B is homogeneous, incompressible and perfectly elastic with a shear modulus
µ. We note m and ω the mass and rotation rate of B and define ωc as the rotation rate
that would compensate gravity at the equator if B was rigid, that is, ω2

c = Gm/R3
0. We

also introduce the small parameter ι = ω2/ω2
c . With these notations, the centrifugal

acceleration in the frame rotating with B derives from the potential

W (r, θ) = −1
2ιω2

c r2 sin2 θ = 1
3ιω2

c r2 [P2(cos θ) − 1] . (5.15)

To determine the potential V , We consider that the surface of B is deformed axisymmetri-
cally under its own rotation (e.g. Ragazzo and Ruiz, 2015; Wahr, 1996, Sect. 4.2)

ζ(θ) = R0 [1 + hP2(cos θ)] , (5.16)

where ζ is the altitude of the surface and |h| ≪ 1. Such a form for the deformation ensures
the conservation of volume at first order in h. Following Ragazzo and Ruiz (2015), we
assume that the deformation is linear and we define the matrix A = I + E such that the
vector position r of a point of B is displaced at the position Ar by the deformation. If
(e⃗x, e⃗y, e⃗z) denotes the orthonormal cartesian basis, with e⃗z pointing towards the north
pole of B, then these vectors are clearly eigenvectors of A. Hence, A is diagonal in the
cartesian basis and looking at Eq. (5.16), we have

A(e⃗x,e⃗y ,e⃗z) = diag
(

1 − h

2 , 1 − h

2 , 1 + h

)
. (5.17)

The increment in potential energy due to the equatorial bulge reads (e.g. Wahr, 1996,
Sect. 4.2)

V (r, θ) = −3
5R2

0ω2
c h

R3
0

r3 P2(cos θ), (5.18)
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and, from Eqs. (5.12) & (5.13) and using k2(t) ∝ δ(t), the second Love number k2 is

k2(η) = −9
5

h

ι
. (5.19)

We need to determine the ratio h/ι. A way to do so is to interpret h as the generalized
coordinate of the Lagrangian

L = T (h) − Ug(h) − Uel(h), (5.20)

and to obtain its value from the least action principle. In this Lagrangian, T is the kinetic
energy of rotation of B while Ug and Uel are the gravitational binding energy and the
elastic energy, respectively. For these quantities, we only consider the increment due to
the rotation. A direct computation gives

T (h) =
∫ 2π

0

∫ π

0

∫ ζ(θ)

R0

1
2ρr4ω2 sin3 θdrdθdφ = −1

5mω2
c ιhR2

0, (5.21)

where ρ is the density of B. Denoting σ the stress tensor of B and ε its strain tensor, the
elastic energy of deformation of B is

Uel = 1
2

∫
B

σ · ε dr = µ
∫
B

ε · ε dr, (5.22)

where we used Hooke’s law for a perfectly elastic body σ = 2µε. The strain tensor is
given by (Ragazzo and Ruiz, 2015)

ε = 1
2
(
A + tA

)
− I = E . (5.23)

Equation (5.17) yields ε · ε = 3h2/2, and by conservation of the volume, we obtain

Uel(h) = 3
2µh2

∫
B

dr = 2πµh2R3
0. (5.24)

The gravitational binding energy is the potential energy of auto-gravitation

Ug = −Gρ2

2

∫
B

∫
B

dr1dr2

|r1 − r2|
= −Gρ2

2

∫
B0

∫
B0

dr1dr2

|A (r1 − r2)| , (5.25)

where B0 is the ball of radius R0 centered at O. Ragazzo and Ruiz (2015) give

Ug = −3m2G
10R0

∫ +∞

0

dλ√
det(A2 + λI)

. (5.26)

Given the simple form of A (Eq. (5.17)), this integral can be computed analytically, and
at second order in h, we have∫ +∞

0

dλ√
det (A2 + λI)

= 2 − 2
5h2. (5.27)
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The factor 2 gives the gravitational binding energy of a homogeneous ball and we discard
it, since we are only interested in the increment due to the deformation. Thus we have

Ug(h) = 3
25mω2

c R2
0h2. (5.28)

We normalize the Lagrangian L by the constant −mω2
c R2

0 and obtain

L = 1
5ιh + 3

25h2 + 3
2

µ

ρgR0
h2, (5.29)

where g = Gm/R2
0 is the surface gravity of B when undeformed. The Euler-Lagrange

equation (Eq. (2.12)) yields

h

ι
= −5

6

(
1 + 25

2
µ

ρgR0

)−1

, (5.30)

and then, using Eq. (5.19) (e.g. Roberts and Nimmo, 2008)

k2(η) = 3
2

(
1 + 25

2
µ

ρgR0

)−1

. (5.31)

In the original computation by Love, the coefficient 25/2 is 19/2 instead. The discrepancy
is due to the assumption that the deformation is linear (r 7→ Ar), which induces an
overestimation of the elastic energy in this work (Ragazzo and Ruiz, 2015, Appendix 2).

For a perfectly fluid body (µ = 0), we retrieve the known value k2(η) = 3/2, or
equivalently, k2(t) = 3δ(t)/2. The energy dissipated into heat due to tidal dissipation is
proportional to the imaginary part of the second Love number, written in the frequency
domain (Segatz et al., 1988, Eq. (13)). For a perfectly elastic body, Im k2 = 0 implies
the absence of energy dissipation. Such a behaviour is not satisfying because for realistic
celestial bodies, the long term evolution of the orbits comes from the dissipation of the
mechanical energy.

5.2.2 A simple viscoelastic body : the Maxwell model
Besides having a zero imaginary part, the second Love number in Eq. (5.31) was obtained
using time-independent potentials (Eqs. (5.15) & (5.18)) and thus does not depend on
the frequency η. Considering time dependent potentials, the form of Eq. (5.31) does not
change (Appendix B of Efroimsky, 2012, Appendix A of Correia et al., 2014) and we have

k2(η) = 3
2

(
1 + 25

2
µ(η)
ρgR0

)−1

. (5.32)

The complex shear modulus µ(η) depends on the rheology of B and we consider, for the
Maxwell model, a homogeneous body with a spring-like behaviour of shear modulus µ and
a piston-like behaviour of damping coefficient ϛ, put in serie (Christensen, 1982, Fig. 1.2).

σ = 2µε σ = 2ϛε̇
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In the time domain, the differential equation verified by this system is σ = 2µε + 2ϛε̇,
while it reads σ = 2µ (1 + iητ) ε in the frequency domain, where we defined the Maxwell
relaxation time as τ = ϛ/µ. Hence we have

µ(η) = µ (1 + iητ) . (5.33)

Other rheologies can be imagined by forming different mechanical systems. In the Kelvin
model for instance, the spring and piston are in parallel and µ(η) = µiητ/ (1 + iητ). The
Maxwell model corresponds to a low-pass filter, since limη→+∞ k2 = 0. In the time domain,
its second Love number reads

k2(t) ∝ e−t/τ ′ with τ ′ = τ

(
1 + 2

25
ρgR0

µ

)−1

, (5.34)

which corresponds to an exponentially decreasing memory of the past. Furthermore,
Im k2(η) ̸= 0 ensures the dissipation of energy.

5.2.3 The constant-∆t model
While the behaviour of the Maxwell model is qualitatively satisfying, the form of Eq.
(5.34) makes it impossible to obtain an analytical expression of the perturbed potential V ,
because of the convolution product (5.12). In the limit when η goes to zero, a first-order
Taylor expansion in the vicinity of η = 0 in k2(η) (Eq. (5.32)) shows that there exists
a scalar κ2 and a time ∆t, depending on the rheology of B, such that the second Love
number reads2 k2(η) = κ2 (1 − iη∆t) + O (η2∆t2). The constant-∆t model is thus defined
as

k2(η) = κ2e
−iη∆t ≈ κ2 (1 − iη∆t) , (5.35)

or equivalently
k2(t) = κ2 δ(t − ∆t). (5.36)

The Dirac distribution in Eq. (5.36) solves the problem that the Maxwell model yields
when trying to obtain an analytical expression for the perturbed potential. The constant-
∆t model is the limiting behaviour of any tidal model when η → 0. In this model, the
time ∆t corresponds to the memory of B, that is, the time between the stress generated
by the perturbing body and the response in the perturbed potential V . In the literature,
the dimensionless parameter κ2 is often referred to as the second Love number.

Due to the Taylor expansion, the constant-∆t model is only valid when η∆t ≪ 1. If
η∆t ≫ 1, W evolves on timescales much shorter than ∆t, and looking at Eq. (5.36), this
means that B undergoes deformations on timescales much shorter than ∆t . Since ∆t
represents the time needed by B to reach hydrostatic equilibrium after a stress, the shape
of B cannot evolve on timescales shorter than ∆t. In that case, if W were to suddenly
start oscillating at high frequency, then V would not react for a time ∆t and then would
also suddenly start oscillating at high frequency, with an amplitude κ2 that of W . This is
obviously highly unrealistic. In practice, the constant-∆t model is a good approximation
as ∆t is at most of the order of a few minutes, while 2π/η generally exceeds one day.

2Any realistic tidal model is such that η = 0 ⇒ Im k2 = 0, to ensure the absence of energy dissipation
in the static case.
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5.2.4 Quality factor
The quality factor Q is related to the amount of energy dissipated in a period T = 2π/η,
and is defined as (MacDonald, 1964, Eq. (124))

Q−1 = 1
2πE⋆

∫ T

0

dE

dt
dt, (5.37)

where E(t) is the energy stored inside of B and E⋆ is its maximum over the period T ,
called peak energy and defined as

E⋆ = −E(T/4) = −
∫ T/4

0

dE

dt
dt. (5.38)

The stored energy E(t) is given by the amount of work done by the perturbing potential
W , that is

dE

dt
=
∫
B

ρv · ∇Wdr, (5.39)

where v is the speed of the elemental volume surrounding r, in the frame attached to
B. The incompressibility of B reads ∇ · v = 0 and yields v · ∇W = ∇ · (Wv). Using
Green-Ostrogradsky theorem and neglecting the tangential contributions of v, Eq. (5.39)
can be rewritten

dE

dt
=
∫

∂B
ρW (R0, σ, t)∂ζ(σ, t)

∂t
dσ, (5.40)

where ∂B is the surface of B, ζ its altitude (Eq. (5.16)), σ = (θ, φ) and dσ = sin θdφdθ.
If B is excited with a frequency η, that is

W (r, σ, t) = W0(r, σ) cos ηt, (5.41)

then, there exists a phase lag δ, accounting for the delay in the response due to the
non-elasticity of B, such that the altitude of the surface takes the form

ζ(σ, t) = ζ0(σ) cos(ηt − δ). (5.42)

Equation (5.40) yields dE/dt = −ηρ℧ cos ηt sin(ηt − δ), where ℧ =
∫

∂B W0(R0, σ)ζ0(σ)dσ.
The energy dissipated over one period and the peak energy then read∫ T

0

dE

dt
dt = πρ℧ sin δ and E⋆ = ρ℧

2 cos δ. (5.43)

Posing δ = η∆t and using Eq. (5.37), we finally have for Q (MacDonald, 1964, Eq. (130))

Q−1 = tan δ = tan η∆t ≈ η∆t. (5.44)

In the literature, it is often assumed that Q is constant, instead of ∆t (e.g. Lainey et al.,
2012, Fig. 2). In the rest of this manuscript, we adopt the constant-Q model3 and make
use of the parameters κ2 and Q. The timescales of orbital decay due to tides do not
depend on both κ2 and Q, but rather on the ratio κ2/Q (see Eq. (6.29)). We give this
ratio in Table 5.1 for some bodies of the Solar System.

3With a unique frequency of excitation η, the constant-∆t and constant-Q models are identical.
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Earth Moon Mars Jupiter Io Saturn Uranus Sun
104 κ2/Q 11 6.4 17 0.11 150 1.6 > 2 0.001

Table 5.1 — Value of κ2/Q for eight bodies in the Solar System. For the planets and satellites
the values are constrained by astrometric measurements (Lainey, 2016). For the Sun, we used
κ2 = 0.02 (Claret and Cunha, 1997, Fig. 3) and Q = 2 × 105 (Barker, 2020, Fig. 8).

5.3 The pseudo-Hamiltonian formalism
Combining together Eqs. (5.4), (5.12), (5.13) and (5.36), the final form for the perturbed
potential due to the tidal bulge raised upon B is

V (r) = −κ2
Gm̃

r

(
R0

r

)2 (R0

r⋆

)3
P2(cos S⋆), (5.45)

where r⋆ = r̃(t − ∆t) and S⋆ is the angle between r and r⋆. Studying a dynamical system
with tidal dissipation, we write the Hamiltonian of the problem as

H = HK(p) + ι1HP (p, q) + ι2 U(p, q, p⋆, q⋆) + T (p), (5.46)

where the tidal potential U contains every tidal contribution and T is the sum of the
kinetic energies of rotation of the non point-mass bodies. The Hamiltonians HK and HP

are the Keplerian and perturbative contributions of the point-mass Hamiltonian, while the
vector p contains the momenta conjugated to the generalised coordinates q. The order of
magnitude of the parameter ι1 is the planet-to-star mass ratio, or the satellite-to-planet
mass ratio, depending on the system, while ι2 is generally much smaller than ι1, due to
the factor R5

0/r5 in Eq. (5.45). In the N -body problem, the tidal potential U is the sum
of N (N − 1)2 contributions4 like in Eq. (5.45), but suitable simplifications allow most of
them to be discarded, as we show in Sect. 6.1.1.

The equations of motion are obtained from H using the Hamilton Eqs. (2.18),
considering that the quantities p⋆ and q⋆ are constant parameters; that is, we do not
derive with respect to the starred variables. The subsequent vector field then depends
on the parameters p⋆ and q⋆, and the dependency is removed with the first-order Taylor
expansion

p⋆ = p − ∆t ṗ, q⋆ = q − ∆t q̇, (5.47)
in the vector field. The Hamilton equations are used again in Eq. (5.47) to compute ṗ
and q̇. To prevent an implicit relation, only the main contributions of the Hamiltonian
are considered. In other words, we assume ι1 = ι2 = 0 to compute the time-derivatives in
Eq. (5.47), that is

p⋆ = p and q⋆ = q − ∆t
∂ (HK + T )

∂p
. (5.48)

4Each of the N bodies raises N − 1 bulges, and every bulge affects the orbit of N − 1 bodies.
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Chapter 6

Tides in the planar three-body co-orbital
problem

Most results of this chapter were first published in Couturier et al. (2021), except those of
Sect. 6.4, which are original.

6.1 Pseudo-Hamiltonian and equations of motion
This chapter extends Chap. 3 by adding tidal dissipation to the analytical model. We
will add terms to the conservative Hamiltonian HK + H(0) + H(2) + H(4) (Eqs. (3.24) &
(3.29)) to account for tidal effects, using the results from Chap. 5. In this chapter, like in
Chap. 3, ι denotes (m1 + m2)/m0. The central body and two co-orbitals have radii R0,
R1 and R2, respectively. We showed in Sect. 5.2.3 that in order to have simple analytical
expressions for the tidal perturbations, we need to consider the constant-∆t model. We
adopt this model in this chapter and the rheology of the bodies is hence characterized
by their second Love number κ2 (Eqs. (5.35) & (5.36)) and their quality factor Q (Sect.
5.2.4).

6.1.1 Expression of the pseudo-Hamiltonian
We want to build a tidal pseudo-Hamiltonian by adding to the conservative Hamiltonian
contributions of the form (5.45). However, each of the three bodies can be a perturbing
body, a perturbed body, or an interacting one, and taking into account every single
tidal contribution will generate 12 new terms like in Eq. (5.45) (Sect. 5.3). In order
to prevent a gruesome expression for the tidal pseudo-Hamiltonian, we show that for a
star−planet−planet system, 10 out of 12 of these contributions can be neglected.

Indeed, tides raised by a planet on a planet, as well as tides raised by the star on
a planet, and interacted with by the other planet, can readily be discarded due to the
low masses and radii of the planets, with respect to that of the star. Hence, only six
contributions remain. Two of these correspond to tides raised by the star on each planet
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and interacted with by the star, and four correspond to tides raised by a planet on the
star and interacted with by each planet. The four latter have an order of magnitude
κ

(0)
2 /Q0(ιm0)2(R0/ā)5, while the two former have an order of magnitude κ

(j)
2 /Qjm

2
0(Rj/ā)5,

where j ∈ {1, 2}. Assuming a similar density for all the bodies, we have Rj ∝ m
1/3
j , and

then (Table 5.1)
κ

(0)
2 (ιm0)2R5

0/Q0

κ
(j)
2 m2

0R
5
j /Qj

= ι1/3 κ
(0)
2 /Q0

κ
(j)
2 /Qj

≪ 1. (6.1)

Tides raised by the planets on the star can be discarded too and we only consider the
two contributions due to tides raised by the star on each planet and interacted with by
the star. In the case of satellites co-orbiting a planet, we stress that tides raised on the
central body cannot be neglected, because the κ2/Q of planet is not smaller than that of
satellites, and the ratio (6.1) could be close to unity. We will treat this case in Sect. 6.4.
For now, we write the perturbation to the conservative Hamiltonian, due to tides, as

Ht = U
(1)
t + U

(2)
t + T1 + T2, (6.2)

where Tj is the kinetic energy of rotation of planet j and U
(j)
t is the contribution due to

tides raised by the star on planet j and interacted with by the star. In the heliocentric
reference frame, we have (Eq. (5.45))

U
(j)
t = −κ

(j)
2 Gm2

0
R5

j

r3
j r⋆3

j

P2 (cos S) and Tj =
Θ′2

j

2Cj

, (6.3)

with
S = λj − λ⋆

j −
(
θj − θ⋆

j

)
, (6.4)

where θj is the angle of rotation of body j, Θ′
j = Cjω

′
j is the conjugated momentum of θj,

Cj = αjmjR
2
j is the moment of inertia of body j, ω′

j = dθj/dt is its rotation rate, and αj

is a dimensionless structure constant depending on the state equation of body j (αj = 2/5
for an homogeneous body). For any quantity z appearing in U

(j)
t , we denote

z⋆ = z(t − ∆tj), (6.5)

while for any angular quantity ς appearing in U
(j)
t , we define

∆ς = ς − ς⋆ = ς(t) − ς(t − ∆tj). (6.6)

We write the tidal Hamiltonian Ht in the variables (J, J2, Xj ; ξ, ξ2, X̄j) introduced in Sect.
3.1.2 and we define Θj = Θ′

j/(mā2η) in order to normalize the action variable Θ′
j (see

Eq. (3.18)). We showed in Sect. 3.1.1 that it is enough to expand the Hamiltonian ιHP

at order 0 (Eq. (3.11)) in the vicinity of the Keplerian resonance given by Eq. (3.6).
However, we show after giving the equations of motions with tides (Eqs. (6.15)), that
expanding U

(j)
t at order 0 in the neighbourhood of the Keplerian resonance loses almost

all tidally relevant dynamics, and we have to keep a dependency on the variables J and
J2 in U

(j)
t . We thus keep exact expressions in theses variables. In order to only consider

the secular (i.e. long-term) dynamics, we average U
(j)
t over λj and U

(j)
t depends on this

angle through ∆λj only. Similarly, U
(j)
t depends on θj through ∆θj only, in virtue of Eq.

(6.4). Since ιHP was expanded up to the fourth degree in eccentricity, we also expand
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U
(j)
t up to that order. The expansion is achieved using the results of Laskar and Robutel

(1995), viewing rj and r⋆
j as two distinct bodies. We define the quantities

qj = κ
(j)
2 ϙ

5
j , and ϙj = Rj

ā
, (6.7)

and performing the rescaling (3.22), we get for Ht = Ht/(mā2η) the expression1

U (j)
t = −qjη

m0

m
R−6

j R⋆−6
j

{
A

(j)
t + D

(j)
2 + D

(j)
4

}
= U

(j)
t

mā2η
,

Tj = η

2αj

m

mj

Θ2
j

ϙ2j
= Tj

mā2η
,

(6.8)

where

D
(j)
2 = B

(j)
t

(
R−1

j XjX̄j + R⋆−1
j X⋆

j X̄⋆
j

)
+
(
RjR⋆

j

)−1/2 (
C

(j)
t XjX̄

⋆
j + C̄

(j)
t X⋆

j X̄j

)
, (6.9)

and

A
(j)
t = 1

4 + 3
4 cos [2 (∆λj − ∆θj)] ,

B
(j)
t = 3

8 − 15
8 cos [2 (∆λj − ∆θj)] ,

C
(j)
t = 3

32ei(∆λj−2∆θj) + 9
16e−i∆λj + 147

32 e−i(3∆λj−2∆θj).

(6.10)

The term D
(j)
4 contains the fourth order in eccentricity and is given in Appendix B.3. The

pseudo-Hamiltonian that we consider for the model is then

H = HK(J, J2) + ιHP (ξ, X1, X2, X̄1, X̄2) + Ht, (6.11)

where
HK = −3

2η
m1 + m2

m
J2 − 3

2η
m

m1 + m2
J2

2 + ηJ2, (6.12)

the perturbation ιHP = H(0) + H(2) + H(4) is given by Eq. (3.29), and

Ht =
∑

j∈{1,2}
U (j)

t (J, J2, J⋆, J⋆
2 , ∆ξ, ∆ξ2, ∆θj, Xj, X⋆

j , X̄j, X̄⋆
j ) +

∑
j∈{1,2}

Tj(Θj). (6.13)

6.1.2 Equations of motions in the presence of tides
The equations of motion are derived from the pseudo-Hamiltonian (6.11), following the
procedure described in Sect. 5.3 and using Eq. (3.23). Denoting

ϑj = 1 −
ω′

j

η
, (6.14)

1Rj(J, J2) is defined by Eq. (3.20) and m = √
m1m2.
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The differential system describing the motion of two planar co-orbital planets, undergoing
tides, reads2

ϑ̇j = −3ηα−1
j

m0

mj

ϙ
−2
j

qj

Qj

R−12
j

{
ϑj + 3 (1 − Rj) + h

(j)
2 R−1

j XjX̄j + h
(j)
4 R−2

j X2
j X̄2

j

}
,

J̇ = −∂HP

∂ξ
+ (1 − δ) J̇

(1)
2 − δJ̇

(2)
2 ,

J̇2 = J̇
(1)
2 + J̇

(2)
2 ,

ξ̇ = ∂HK

∂J
+ 6ηq1

m0

m1
R−13

1 Q2
(
R−1

1 X1X̄1
)

− 6ηq2
m0

m2
R−13

2 Q2
(
R−1

2 X2X̄2
)

,

Ẋj = −2i
m

mj

∂
(
H(2) + H(4)

)
∂X̄j

− 3η
qj

Qj

m0

mj

R−13
j Xj

{
p

(j)
2 − 5

2iQj + XjX̄j

Rj

(
p

(j)
4 − 65

4 iQj

)}
,

(6.15)

where

J̇
(j)
2 = −3η

qj

Qj

m0

m
R−12

j

{
ϑj + 3 (1 − Rj) + k

(j)
2 R−1

j XjX̄j + k
(j)
4 R−2

j X2
j X̄2

j

}
,

h
(j)
2 = 93

2 + 15
2 ϑj − 81

2 Rj, h
(j)
4 = 1989

8 + 195
8 ϑj − 819

4 Rj,

k
(j)
2 = 157

2 + 27
2 ϑj − 69Rj, k

(j)
4 = 2515

4 + 273
4 ϑj − 2091

4 Rj,

p
(j)
2 = 32 + 6 ϑj − 57

2 Rj, p
(j)
4 = 3041

8 + 351
8 ϑj − 318Rj,

Q2 (Z) = 1 + 65
8 Z + 455

16 Z2.

(6.16)

The set of Eqs. (6.15) does not depend on the angle ξ2. Since we are not interested in
the dynamics of this angle, we discarded the line ξ̇2 from the differential system. If the
Hamiltonian Ht had been expanded at order 0 in the vicinity of the Keplerian resonance
(3.6) (i.e. at order 0 in the variables J and J2), then the subsequent differential system
would be the set of Eqs. (6.15), with the substitution Rj = 1. Let us study the circular
dynamics in that case, that we treated in the point-mass approximation in Sect. 3.2.1.
We show in Sect. 6.2.2 that the rotation rates ωj are damped by tides in a timescale
much smaller than the other tidal timescales, so we also perform the substitution ϑj = 0
in Eqs. (6.15) to consider the dynamics after reaching the spin-orbit synchronization.
In the circular case, we substitute Xj by 0 and we obtain, for the librating angle ξ, the
differential equation

ξ̈ = −3η2ι sin ξ
(
1 − (2 − 2 cos ξ)−3/2

)
. (6.17)

All tidal contributions have disappeared and we end up with the differential equation
describing the motion of ξ in the point-mass approximation (Yoder et al., 1983, Eq. (9)).
This equation predicts a periodic motion for ξ and no long-term effects due to tides are
described. It is thus necessary to keep a dependency in J and J2 in the tidal Hamiltonian
to have a satisfying description of the tidal dynamics of the co-orbital motion.

2δ was defined by Eq. (3.14).
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6.1.3 Conservation of the total angular momentum with tides
While tides do not preserve the total energy of the system because of the dissipation, the
total angular momentum of the system star−planet−planet has to be conserved, even
with tides, since the system is closed. We can show that the differential system (6.15) is
indeed consistent with the conservation of the total angular momentum. The normalized3

total angular momentum C reads (Robutel and Pousse, 2013, Eq. (6))

C =
∑

j

mj

m
Rj − 1

2
∑

j

mj

m
XjX̄j +

∑
j

αj
mj

m
ϙ

2
j (1 − ϑj) . (6.18)

From (6.15) we get

Ċ =
2∑

j=1
3η

qj

Qj

m0

m
R−13

j XjX̄j

{
h

(j)
2 − k

(j)
2 + p

(j)
2 + R−1

j XjX̄j

(
h

(j)
4 − k

(j)
4 + p

(j)
4

)}
, (6.19)

and the total angular momentum is conserved since we have (Eq. (6.16))

h
(j)
2 − k

(j)
2 + p

(j)
2 = 0 and

h
(j)
4 − k

(j)
4 + p

(j)
4 = 0.

(6.20)

6.2 Equilibria and linearization
In this section, we compute the equilibria of the differential system (6.15) and the
eigenvalues in their vicinity, in order to infer the stability of the system, using the results
of Sect. 2.4.1.

6.2.1 The eigenvalues
Since the system (6.15) is a perturbation of the Hamiltonian system derived from HK +ιHP ,
its fixed points are a perturbation of the Lagrangian equilibria. Only the tidal contributions
of first order in ι−1 (q1 + q2) appear in (6.15), and it is enough to restrict to the first order
to compute the position of the fixed points. We find, for j ∈ {1, 2},

ϑj = 0,

ξ − π

3 = 0,

−3m1 + m2

m
J + 6q1

m0

m1
− 6q2

m0

m2
= 0,

Xj = 0.

(6.21)

Note that this choice for the fixed points does not make the right hand side of system
(6.15) to be exactly zero, but rather a quantity of second order in ι−1 (q1 + q2). Infinitely
many choices are possible for Eq. (6.21) that make the right-hand side of (6.15) a quantity
of second order in ι−1 (q1 + q2), and we choose one of them. This choice is the most natural

3Normalized by mā2η.
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because it guarantees that the fixed points correspond to a solid rotation of the whole
system (ϑj = 0). Equations (6.21) only provide 6 independent equations for 7 variables4.
In order to have a unique fixed point in the neighbourhood of which to linearize the
system, we arbitrarily choose

f1 + f2 = 0, (6.22)
where the fj are defined by Eq. (3.21). At first order in ι−1(q1 + q2), the linearized system
does not depend on the choice of Eqs. (6.21) & (6.22).

Before we linearize the differential system, we show that our model allows us to recover
a well known result, called pseudo-synchronization. We fix to 0 the value of ϑ̇j in (6.15). If
we place ourselves at the Keplerian resonance; that is, at aj = ā (or equivalently Rj = 1),
we find5 for the equilibrium value of the rotation rate of planet j

ω′
j

η
= 1 + 6e2

j + 3
8e4

j + O
(
e6

j

)
. (6.23)

This is the pseudo-synchronization of the rotation rates. At non-zero eccentricities, the
rotation rates ω′

j are not synchronized with λ̇j , but rather slightly super-synchronous. The
same result can be reached by equating to zero the right-hand side of Eq. (3) in Correia
and Laskar (2004). Equation (6.23) and Sect. 6.1.3 provide two independent verifications
of the set of Eqs. (6.15).

Let X0 = t (ϑ1,0, ϑ2,0, ξ0, J0, J2,0, X1,0, X2,0) be the unique solution of Eqs. (6.21) &
(6.22), that is, the equilibrium value of X = t (ϑ1, ϑ2, ξ, J, J2, X1, X2). Once linearized in
the vicinity of X0, the differential system (6.15) reads

d

dt
∆X = (Q0 + Q1) ∆X, (6.24)

where ∆X = X−X0. The matrix Q0 derives from the conservative Hamiltonian HK + ιHP ,
while Q1 corresponds to the tidal contribution Ht. The 7 × 7 matrix Q0 + Q1 is block
diagonal with a 5×5 block corresponding to (ϑ1, ϑ2, ξ, J, J2), and 2×2 block, corresponding
to X1 and X2. This shows that, even in the presence of tides, the circular and eccentric
dynamics are uncoupled near the Lagrangian equilibria L4,5. A detailed expression of
theses matrices is given in appendix C.3. The set of eigenvalues of Q0 is

{0, 0, 0, iν, −iν, ig1, ig2} , (6.25)

where (Eqs. (3.32) & (3.42))

ν = η

√
27ι

4 , g1 = η
27ι

8 , g2 = 0. (6.26)

Among the first three 0 eigenvalues, two correspond to the constant rotation rate of the
planets and another to the conservation of the total angular momentum (constancy of J2).
The ±iν eigenvalues give the libration frequency of the resonant angle ξ = λ1 − λ2 around
the Lagrangian equilibria L4,5 (Sect. 3.2.1), and the last two eigenvalues give the precession
frequency of the pericentres in the eigenmodes anti-Lagrange for g1 and Lagrange for g2

4This is due to the conservation of the total angular momentum of the system.
5Using XjX̄j = 2

(
1 −

√
1 − e2

j

)
= e2

j + e4
j/4 + O(e6

j ).
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(Sect. 3.2.2). In particular, all seven eigenvalues of Q0 are pure imaginary and without
the contribution of tides, the trajectories of the linearized system are quasiperiodic.

The matrix Q0 + Q1 is too gruesome for its eigenvalues to be computed by finding
the roots of its characteristic polynomial. Instead, since Q1 is a small perturbation of Q0,
and because we can easily find a diagonal basis of Q0, we use the perturbative approach
described in Sect. 2.4.2 to find the eigenvalues of Q0 + Q1 at first order in ι−1 (q1 + q2).
The computations are performed with the algebraic manipulator Maxima and the set of
eigenvalues of Q0 + Q1 is {

ϡ1,ϡ2, 0, λ, λ̄, λAL, λL
}

, (6.27)
with

ϡj = −3ηα−1
j

qj

Qj

ϙ
−2
j

m0

mj

+ 9ηι−1 qj

Qj

< 0,

λ = 9
2ηι−1

(
m1

m2

q2

Q2
+ m2

m1

q1

Q1

)
+ iν

[
1 + 13ι−1

(
m1

m2
q2 + m2

m1
q1

)]
,

λAL = −21
2 ηι−1

(
m1

m2

q2

Q2
+ m2

m1

q1

Q1

)
+ ig1

[
1 + 20

9 ι−2
(

m1

m2
q2 + m2

m1
q1

)]
,

λL = −21
2 ηι−1

(
q1

Q1
+ q2

Q2

)
+ 15

2 iηι−1 (q1 + q2) .

(6.28)

We note that the eigenvalues are no longer pure imaginary and we boxed the real parts for
a better visualization. The real parts are proportional to the inverse quality factors Q−1

j ,
while the perturbations to the imaginary parts are not. As a consequence, elastic tides,
for which Qj = ∞ (or equivalently, ∆tj = 0, see Eq. (5.44)), do not yield dissipation
but only change slightly the fundamental frequencies of the system. We computed the
eigenvectors of the linearized system and we show in appendix C.3 how the eigenmodes
Lagrange and anti-Lagrange are slightly modified by tides.

The matrix Q0 + Q1 is singular, and one of its eigenvalues is zero, corresponding to the
conservation of the total angular momentum (Sect. 6.1.3). As a result of tidal dissipation,
the eigenvalues λAL and λL, perturbations of ig1 and ig2, respectively, have non-zero
negative real parts. Therefore, both eccentric eigenmodes Lagrange and anti-Lagrange
are damped to zero. Similarly, ϡj < 0, and the rotation rates of both planets are also
damped. On the contrary, the real part of λ and λ̄, perturbations of iν and −iν, are
strictly positive, which leads to an exponential increase of the libration amplitude of ξ
when the system is close to the Lagrangian equilibria L4 or L5.

The fact that Reλ is strictly positive is not a surprise. Indeed, L4 and L5 are maxima
of energy in the phase space (Fig. 3.1), and since tides are responsible for a decrease in the
orbital energy, we expect the system to be driven away from the Lagrangian equilibria by
tides, hence the positivity of Reλ. The fact that L4 and L5 are maxima of energy is not
a surprise either, as Moeckel (2017) proved that a system of N ≥ 3 rigid bodies rotating
rigidly and uniformly around their axis of total angular momentum cannot be an energy
minimizer of the space phase. Therefore, we could have expected without calculation
that the elliptic Lagrangian equilibria are energy maximizers6, and as a consequence, that

6They must be critical points, in order to be equilibria of the averaged model, and they cannot be

https://maxima.sourceforge.io/
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dissipative tides make them unstable.

6.2.2 The timescales of tidal evolution
We define here the characteristic timescale of a given proper mode of the system (6.24) as
the time needed for its amplitude to be multiplied (or divided, if the corresponding real
part is negative) by a factor exp(1). According to the eigenvalues (6.28), these times are

τ
(j)
rot = 1

6π
αjϙ

2
j

mj

m0

Qj

qj

[
1 + 3mj

m1 + m2
ϙ

2
jαj

]
T,

τL = ι

21π

(
q1

Q1
+ q2

Q2

)−1

T,

τAL = ι

21π

(
m2

m1

q1

Q1
+ m1

m2

q2

Q2

)−1

T,

τlib = 7
3τAL,

(6.29)

where T = 2π/η is the orbital period. We note that the times τ
(j)
rot are much smaller

than the three other characteristic timescales, due to the presence of the factor ϙ2j ≪ 1.
That is, regardless of the parameters and initial conditions, the rotations of the planets
are damped to their equilibrium value (6.23) in a timescale such that the eccentricities
and the libration angle do not undergo significant damping or excitation. We know from
the analysis of the eigenvalues (6.28) that the two eccentric eigenmodes Lagrange and
anti-Lagrange are damped to zero, while the libration amplitude of the resonant angle
ξ exponentially increases. We now compare the timescales τAL, τL and τlib to determine
which proper mode amplitude evolves faster. Even though both eccentric eigenmodes are
damped, the damping times may be different. By comparing them, we can find if the
system favours the Lagrange or the anti-Lagrange configuration. Indeed if

• τAL

τL
< 1, then the system settles in Lagrange, whereas if

• τAL

τL
> 1, then the system settles in anti-Lagrange.

Moreover, comparing the time τlib with the eccentric times τAL and τL allows us to
determine if the system is still eccentric or already nearly circular when the libration
amplitude has significantly increased. We have

τlib = ι

9πΩ
τAL

τL
T, (6.30)

where we defined Ω = q1/Q1 + q2/Q2 the sum of the dissipation rates. Equation (6.30)
shows that, for a given sum of the planetary masses, ι, and sum of the dissipation rates,
Ω, the system moves away from L4,5 faster if it favours Lagrange, and slower if it favours
anti-Lagrange.

These results are a priori valid only in a small neighboorhoud of L4,5, but in fact,
the simulations from Sect. 6.3 show that the behaviour of the system near L4,5 is valid

saddle points, or they would be hyperbolic.
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even at high libration amplitudes. This means that the exponential increase in libration
amplitude is unbounded. Once the libration amplitude of ξ increased too much, Eq. (3.37)
is not verified anymore, the co-orbitals enter each other’s Hill sphere and planet−planet
interactions disrupt the system. The planets either get ejected from the co-orbital
resonance, or they collide. The disruption time depends on τlib, and so, Lagrange-like
systems have a short life expectancy, while anti-Lagrange-like systems have a long life
expectancy (for a given ι and Ω). Moreover, a Lagrange-like system is eccentric when old7

(as long as it was eccentric when young), while an anti-Lagrange-like system is always
circular when old. Indeed, for an anti-Lagrange-like system, the characteristic time τe
of eccentricity damping is given by τAL and then, τlib = 7τe/3 ∼ τe ensures that the
eccentricity is damped when the libration amplitude has significantly increased. On the
other hand, for a Lagrange-like system, τe = τL and then, τlib ≪ τe ensures that the
system is still eccentric when the libration amplitude has significantly increased.

Although it is clear that τlib depends on the semi-major axis ā, Eq. (6.30) does not
explicitly show it, since the dependency on ā is hidden in qj, Qj and T . We have

τlib ∝ τAL

τL
āβ, (6.31)

where β is 8 for the constant-∆t model and 6.5 for the constant-Q model. Thus, for a
large ā or a strong anti-Lagrange tendency, co-orbital planetary systems may survive for
the entire life-time of the star in the main sequence.

Interestingly, the ratio between the two eccentric damping timescales depends only on
the ratio between the planetary masses and the ratio between the dissipation rates inside
the planets. That is, denoting

x = m1

m2
and y = q2/Q2

q1/Q1
= κ

(2)
2 ϙ

5
2/Q2

κ
(1)
2 ϙ

5
1/Q1

, (6.32)

we have
τAL

τL
= x (1 + y)

1 + yx2 . (6.33)

The equality between the eccentric damping timescales (τAL = τL) occurs at x = 1 and
xy = 1, plotted by black lines in Fig. 6.1, where we also show the ratio τAL/τL as a
function of x and y. We clearly observe two regions, corresponding to Lagrange-like and
anti-Lagrange-like systems.

Let us assume that the quality factor Qj is mass independent. We then deduce from
ϙj ∝ m

1/3
j and Eq. (6.32) that

y ∝ x−5/3. (6.34)

The blue line in Fig. 6.1 plots y = x−5/3. It shows the path followed by a system with two
initially identical planets (white spot) when we change the mass repartition between them.
We conclude that for a given sum of the planetary masses ι, and sum of the dissipation
rates Ω, the expectancy of life of the system is at its shortest for m1 = m2 = ιm0/2 (orange
area) and it tends towards infinity if either m1 or m2 tends towards ιm0, or towards zero
(yellow/white area).

7Old means that its age is significant with respect to its expectancy of life.
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Fig. 6.1 — Value of τAL/τL in colorscale. The black straight lines are the locations of the points
where τAL = τL. The blue line is the path followed by a system of variable mass repartition.
The black spots are the positions of the numerical simulations of Sect. 6.3. The white dot
(x = 1, y = 1) is where Rodríguez et al. (2013) performed all of their simulations. It complies
with τAL = τL, explaining why they did not see any hierarchy between the eccentric eigenmodes.
Systems in the red-black regions settle into Lagrange, have a short life expectancy and are
eccentric when old, while systems in the yellow-white regions settle into anti-Lagrange, have a
long life expectancy and are circular when old.

Combining Eqs. (6.30) & (6.33), the characteristic timescale for the increase of the
libration amplitude reads

τlib = ι

9πΩ
x (1 + y)
1 + yx2 T. (6.35)

In the case of identical co-orbital planets (same mass, radius and tidal parameters), we
derive for the characteristic timescale of destruction the simple expression

τlib = mjQjT

9πm0qj

= 0.565 Gyr
(

mj

M⊕

)(
M⊙

m0

)3/2 ( ā

0.04 AU

)6.5 (R⊕

Rj

)5
 0.0011

κ
(j)
2 /Qj

 , (6.36)

where we considered two co-orbital Earth-like planets for the numerical evaluation in Eq.
(6.36). The value of κ2/Q for the Earth is given in Table 5.1.

6.2.3 Looking for co-orbital exoplanets
We can use the results from Sect. 6.2.2 to estimate whether or not an already discovered
exoplanet may have an undetected co-orbital companion. For a co-orbital system, we
denote τhs and τdest the time needed to reach the horseshoe-shaped orbits (that is, to cross
the separatrix emanating from L3), and the time needed for close encounters to disrupt
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Fig. 6.2 — Disruption time (Gyr) of an hypothetical co-orbital system as a function of the
orbital period of the observed planet and of the mass of the host star. The couple Saturn+Earth
is plotted in orange while the couple Earth+Earth is plotted in blue. The solid lines plot the
minimum of the main sequence duration and of the age of the universe for both couples. Systems
below these lines may have been already destroyed at the time of observation, but systems above
outlive either their host star or the age of the universe. The blue and orange dots correspond to
HD 158259 c and HD 102956 b, respectively. Note that, for a given orbital period, co-orbital
systems live longer around a massive host star because they have a larger semi-major axis.

the co-orbital resonance, respectively. In the rest of this section, we use the accessible
observational parameters to approximate τdest and then discard cases such that τdest is
too small.

The libration amplitude ∆ξ = max (ξ − 60◦) is defined as the angular distance to
L4. If ∆ξ0 is the initial libration amplitude of the system and if ∆ξ is a small libration
amplitude greater than ∆ξ0, then, by definition of τlib, the time τξ needed to reach the
libration amplitude ∆ξ is given by

τξ = ln
(

∆ξ

∆ξ0

)
τlib. (6.37)

Equation (6.37) cannot be used, a priori, to predict the time τhs, since the separatrix
emanating from L3 is far from the fixed point L4. Nevertheless, by performing numerical
simulations of the set of Eqs. (6.15) with arbitrary parameters and initial conditions, we
verify that the expression

τhs ≈ ln
(

60◦

∆ξ0

)
τlib, (6.38)

is always a good approximation as long as ∆ξ0 ≤ 15◦, where ∆ξ0 is in arc degrees.
Although τhs/τlib only depends on ∆ξ0, we expect that τdest/τlib also depends on ι, since
this parameter controls the maximum libration amplitude before the system becomes
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Co-orbital pair τhs (Gyr) Co-orbital pair τhs (Gyr) Co-orbital pair τhs (Gyr)
Earth & Earth 3.612 Moon & Mars 28.48 Mars & Saturn 5.000
Earth & Moon 43.81 Moon & Jupiter 50.63 Jupiter & Jupiter 0.7214
Earth & Mars 5.552 Moon & Io 4.374 Jupiter & Io 2.072
Earth & Jupiter 3.567 Moon & Saturn 43.13 Jupiter & Saturn 0.04741
Earth & Io 2.085 Mars & Mars 5.892 Io & Io 2.072
Earth & Saturn 1.803 Mars & Jupiter 5.878 Io & Saturn 2.054
Moon & Moon 50.76 Mars & Io 2.250 Saturn & Saturn 0.03704

Table 6.1 — Time to horseshoe-shaped orbits τhs for a variety of co-orbital systems, computed
with Eq. (6.40). The tidal parameters are those of Table 5.1 and only the six bodies for which
κ2/Q is well constrained are included. In general, τdest is close to τhs.

unstable (Eq. (3.37)). The smaller ι is, the larger the maximum libration amplitude is.
Since ι = 3 × 10−4 is the highest value allowing horseshoe-shaped orbits (Leleu et al.,
2015, Fig. 4), the equality τdest = τhs occurs at this value. If we take ∆ξ0 = 10◦, we have

1/2 τhs ≤ τdest ≤ 2 τhs ⇔ 10−9 ≲ ι ≲ 0.005, (6.39)

and so, τhs and τdest do not differ by more than a factor 2 for a wide range of ι. We thus
consider τdest ≈ τhs in this range and Eqs. (6.35) & (6.38) can be used to predict τdest.

Figure 6.2 shows the disruption times of a Saturn-Earth co-orbital system (in orange),
and of a system of two Earth-like planets (in blue), with ∆ξ0 = 10◦. The tidal parameters
adopted for these systems are given in Table 5.1. The solid line plots min (τms, τu) where
τms = 1010 yr (m0/M⊙)−2 is the duration of the main-sequence of the host star and
τu = 13.77 Gyr is the age of the Universe. Assuming that the Earth and Saturn are
representative of the average rocky planet and gas giant, Fig. 6.2 tells us if an already
detected gas giant may have a companion (orange lines), or if an already detected rocky
planet may have a companion (blue lines). The detected exoplanet is located in Fig. 6.2
using its orbital period and the mass of the host star. If it is below its associated solid
line (orange for a gas giant, blue for a rocky planet), then its companion was already
ejected, if it ever existed. On the contrary, if it is above this line, the hypothetical pair of
co-orbital outlives either the host star or the age of the Universe and it is worth looking
for the companion. As an example, it is very unlikely to find a co-orbital companion for
the rocky planet HD 158259 c (Hara et al., 2020), plotted with a blue dot in Fig. 6.2, but
we cannot rule out that the gas giant HD 102956 b (Luhn et al., 2019), plotted with an
orange dot in Fig. 6.2, has a co-orbital companion.

Combining Eqs. (6.35) & (6.38), the time τhs to reach the horseshoe-shaped orbits
takes the form

τhs = ι

9πΩ
x (1 + y)
1 + yx2 ln

(
60◦

∆ξ0

)
T. (6.40)

We can use the tidal parameters given by Table 5.1 to compute this time for a large
variety of co-orbital systems. We give in Table 6.1 the time τhs for hypothetical co-orbital
pairs of exoplanets made up of Solar System bodies. The semimajor axis is ā = 0.04 AU
and the mass of the host star is m0 = M⊙, but τhs can easily be deduced for other values
using the exponents of Eq. (6.36), that are still valid for different co-orbitals. We choose
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∆ξ0 = 0.1◦, and again, it is straightforward to extend the results to another choice of ∆ξ0
using Eq. (6.38).

6.3 Numerical simulations
In this section, in order to verify the analytical results of Sect. 6.2, we perform some
numerical simulations of planetary systems representative of the different dynamical
regimes of co-orbital planets undergoing tidal interactions with the star, such as those
described in Sect. 6.2.

6.3.1 Procedure
We numerically integrate the six systems that correspond to the black dots on Fig. 6.1.
For all of them we choose the initial conditions and parameters8

ι = 2 × 10−4, Ω = 4 × 10−13, m0 = M⊙, α1 = α2 = 0.33,

ρ2 = 4ρ1 = 2000 kg/m3, e2,0 = 2e1,0 = 0.04, ϖ1,0 = ϖ2,0 = 0,

a1,0 = a2,0 = ā = 0.02 AU, ϑ1,0 = ϑ2,0 = 0, ξ0 = 62◦,

(6.41)

that is, the systems are initially 2◦ away from L4. Since the total planetary masses ι
and the total dissipation rate Ω = q1/Q1 + q2/Q2 are the same for all systems, their
positions can all be plotted in Fig. 6.1 and their tidal timescales are entirely determined
by the values of the mass ratio x and the dissipation rate ratio y (see Eq. (6.32)), which
are the only variable parameters between the systems (see Table 6.2). According to Eq.
(6.30), we expect that the systems that are in the yellow regions of Fig. 6.1 live longer
than those in the red regions. This choice for the initial eccentricities and longitude of
the pericentres guarantees that the systems are not initially collinear to the Lagrange
or anti-Lagrange configuration, and their evolution allows us to determine if they are
Lagrange-like or anti-Lagrange-like. The timescales of the six systems, in number of
orbital periods and deduced from Sect. 6.2.2, are given in Table 6.2. The time τlib is
the characteristic timescale of libration amplitude excitation given by Eqs. (6.35), while
τ

(num)
lib is directly computed from the numerical value of Z0 + Z1 (given in appendix C.3),

without using the perturbative method of Sect. 2.4.2.
8The variable ρj is the density of planet j.

# color x y τlib τ
(num)
lib τAL τL

1 blue 10 100 1 785 893 1 845 021 765 382 7 578 807
2 green 1/500 100 3 570 716 4 198 710 1 530 306 7 578 807
3 red 100 1/50 8 973 910 9 161 859 3 845 961 7 578 807
4 purple 100 1/200 34 847 651 34 893 952 14 934 707 7 578 807
5 yellow 1/10 100 89 303 607 89 304 263 38 272 974 7 578 807
6 black 100 10−5 1 607 641 764 1 607 642 323 688 989 327 7 578 807

Table 6.2 — Values of x, y and of the corresponding timescales of the systems. The timescales
are given in number of orbital periods, that is, in units of 2π/η.
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Fig. 6.3 — Value of the libration angle ξ = λ1 − λ2 against time, integrated with Eqs. (6.15)
(top) and Eqs. (C.13) (bottom). The switching from tadpole to horseshoe-shaped orbits (crossing
of the separatrix emanating from L3) is very visible, as the libration amplitude suddenly increases,
giving this boot-shape to the plots. As expected from Fig. 6.1 and Table 6.2, systems 4, 5 and 6
live longer than systems 1, 2 and 3.

For some systems, especially system 2, there is a slight difference between τ
(num)
lib and

τlib. For these systems, the values of a1 and a2 in the matrix Z1 (appendix C.3) are much
larger than the other entries of the matrix, and are such that aj ∼ ν, which means that the
condition |λi − λj| ≫ ε in Eq. (2.88) of Sect. 2.4.2 is poorly respected. A smaller value
for the sum of the dissipation rates Ω provides a perfect agreement between τ

(num)
lib and

τlib for all six systems, but it also leads to much longer simulations. Here, we purposefully
choose a large value for Ω in order to have quick simulations. On the other hand, there
is no disagreement between the analytical values of τAL and τL given by Eq. (6.29) and
their numerical counterparts, since the eccentricities are uncoupled from the rest of the
variables in the linearized system and the entries of M1 in appendix C.3 respect the
condition of Eq. (2.88) for all six systems.

Each system is numerically integrated using two different sets of equations. In the
first set, we use the secular Eqs. (6.15) derived in Sect. 6.1.2. In the second set, we use
a n-body unaveraged and unexpanded model in the regular position-speed coordinates,
with the constant-∆t model. The second set is given by Eq. (C.13) of appendix C.4. The
results are displayed in Figs. 6.3, 6.4 and 6.5. In each figure, the top panels correspond to
the set of Eqs. (6.15) while the bottom panels correspond to the set of Eqs. (C.13). All
systems except system 6 are integrated long enough for the co-orbital configuration to be
destroyed.
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Fig. 6.4 — Value of ϖ1 − ϖ2 against time, integrated with Eqs. (6.15) (top) and Eqs. (C.13)
(bottom). Blue, green and red systems settle into the Lagrange configuration and have a short
life while purple, yellow and black systems settle into the anti-Lagrange configuration and live
long. This is in agreement with what we deduce from the analytical results, especially Fig. 6.1
and Table 6.2.

6.3.2 Comparison between the model and the complete system
We observe that there is always a very good agreement between Eqs. (6.15) and Eqs.
(C.13), except when the libration amplitude is near 360◦. Indeed, as the libration amplitude
increases, close encounters between the planets mean that planet−planet interactions are
no longer perturbations of the Keplerian motion and Eq. (3.37) is not verified anymore.
On the top plot of Fig. 6.3, the amplitude of ξ tends towards 360◦ as time goes to infinity
but never reaches it, while on the bottom plot, there exists a finite time when ξ reaches
360◦, meaning it is a circulating angle and the planets either collide or get ejected off the
co-orbital resonance. All simulations confirm the destruction of the co-orbital resonance.
We also note that for small eccentricities, the averaged Eqs. (6.15) (plotted on top) differ
from the complete Eqs. (C.13) (plotted at the bottom). We believe that this is due to
short period influences that were averaged out in our model. Indeed, while the manifold
(X1 = X2 = 0) is stable by the flow of the averaged Hamiltonian, it is not stable by the
flow of the complete Hamiltonian. This may explain the differences between both plots at
low eccentricities. This does not discredit though the theoretical results obtained in Sect.
6.2.

Let τ
(a)
hs , τ

(s)
hs and τ

(c)
hs be the times needed to reach the horseshoe-shaped orbits according

to the analytical expression9 (6.38), the simulation of the secular Eqs. (6.15) and the

9Due to tides being too strong (Ω is too large) for systems 1 and 2, we considered τ
(num)
lib instead of

τlib. With weaker tides, there is no difference between these two timescales.
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Fig. 6.5 — Eccentricities of both planets against time, integrated with Eqs. (6.15) (top)
and Eqs. (C.13) (bottom). For a same system, e1 and e2 are plotted with the same color.
Anti-Lagrange-like systems comply with m1e1 = m2e2 and both plots are easily distinguished
while for Lagrange-like system, such that e1 = e2, both plots are almost overlaid. This is in
agreement with what we deduce from Fig. 6.1 and Table 6.2.

simulation of the complete Eqs. (C.13), respectively. We give these times in Table 6.3,
for reference. In our model, the exterior of the co-orbital resonance does not exist (Fig.
3.1), and only the simulation of the complete Eqs. (C.13) allows τdest, the time before
destruction of the co-orbital pair, to be known. We also give this time in Table 6.3. The
relative error between the three times τhs is consistently smaller than 1%, and the model is
reliable on the whole tadpole region. For this choice of ι, we have, for the first 5 systems,
τhs/τdest ≈ 1.1, which allowed us to predict the destruction time for system 6.

As expected from the values of τAL and τL given in Table 6.2, the three shortest
simulations correspond to Lagrange-like systems, while the three longest correspond to
anti-Lagrange like systems. This is particularly clear in Fig. 6.4, which displays the

# τ
(a)
hs τ

(s)
hs τ

(c)
hs |τ (a)

hs − τ
(s)
hs |/τ

(s)
hs |τ (s)

hs − τ
(c)
hs |/τ

(c)
hs τdest

1 6.2753 6.2856 6.2427 0.001639 0.00683 6.9202
2 14.281 14.306 14.178 0.001748 0.00894 16.146
3 31.161 31.272 31.054 0.003550 0.00695 34.841
4 118.68 118.98 118.15 0.002521 0.00693 129.36
5 303.74 302.79 300.44 0.003137 0.00777 328.04
6 5467.9 ∼ 6 010

Table 6.3 — Times to reach horseshoe-shaped orbits and until destruction, in millions of periods.
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Fig. 6.6 — Total normalized energy of system 1 (left) and system 5 (right). The very anti-
Lagrange-like system 5 features a pronounced plateau in its energy decrease and lives long while
the very Lagrange-like system 1 does not show any marked plateau and has a short life.

value of ϖ1 − ϖ2. For the short-lived systems (blue, green and red), the difference of the
longitude of pericentres first settles around 60◦ = π/3 at low libration amplitude, before
it moves to 0◦, when in horseshoe orbit. For the long-lived systems (yellow, black and
purple), the difference of the longitude of pericentres first settles around 240◦ = 4π/3 at
low libration amplitude, before it moves to 180◦ = π, when in horseshoe orbit. This is in
total agreement with Eqs. (3.44), (3.45), (3.49) & (3.50).

Figure 6.5 also confirms the Lagrange-like behaviour of short-lived systems, since
e1 = e2 for these systems, while m1e1 = m2e2 for long-lived simulations, characteristic of
their anti-Lagrange-like behaviour (Eqs. (3.44) & (3.45), Sect. 3.2.2). As also expected
from the theoretical results, Lagrange-like system are still eccentric when they are old
(e.g. the green and blue plots), while anti-Lagrange-like system are circular when they are
at the end of their life (yellow plot).

6.3.3 A plateau in the energy decrease
In Fig. 6.6, we show the total energy HK + ιHP + T1 + T2 of system 1 and system 5.
The energy of the anti-Lagrange-like system 5 (yellow) features two steep decrease and
a broad plateau. At the beginning of the simulation, the eccentricities of the planets
are still significant, meaning that ẇj, the time derivative of their true longitude, is not
constant. This prevents a solid rotation around the star, although the equilibrium rotation
is already reached (small τ

(j)
rot ), and ensures dissipation: it is the first steep decrease. Then,

the eccentricities are almost damped while the libration amplitude did not significantly
increase yet. The motion around the star is almost a solid rotation and very few energy is
dissipated into heat: it is the plateau. Finally, the high libration amplitude of ξ reached
in late tadpole and horseshoe-shaped orbits ensures the non-constancy of ẇj and energy
dissipation: it is the second steep decrease.
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For almost restricted systems, very anti-Lagrange-like, the amplitude of libration has
to be very high for the least massive planet to significantly perturb the solid rotation of
the most massive one. Thus, these systems have very broad plateau and a very high life
expectancy. On the other hand, the energy of the Lagrange-like system 1 (blue), does not
feature such a marked plateau, because the eccentricities are always nonzero even at high
libration amplitude, and hence its life is far shorter.

6.4 Tides raised on the central body

In the previous sections of this chapter, we discarded tides raised on the central body,
because we showed that for a system star−planet−planet, the ratio of Eq. (6.1) is much
smaller than unity. In this section, we show that such tides have to be taken into account
for a system planet−satellite−satellite and we establish the corresponding tidal timescales.

6.4.1 Orders of magnitude
In Sect. 6.1.1, we only retained two out of the 12 tidal potentials of the form of Eq. (5.45),
namely those corresponding to tides raised by the star on each planet and interacted with
by the star. In this section, the central body is a planet, while the co-orbitals are satellites.
Four additional contributions have hence to be taken into account, corresponding to tides
raised by both satellites on the planet and interacted with by both satellites. Indeed, the
ratio of Eq. (6.1) in that case can be of the order of unity.

The best example of such system is the pair Janus and Epimetheus orbiting Saturn.
For this system, we have ι1/3 = 0.00163 and according to Table 5.1, the κ2/Q of Saturn is
κ

(0)
2 /Q0 = 1.6 × 10−4 (Lainey, 2016). The κ2/Q of Janus and Epimetheus are unknown,

but we can estimate them. We first estimate the value of κ2 with Eq. (5.31). For icy
satellites made up of intact ice, it is common to take µ = 4 GPa (Quillen et al., 2017),
but fractures and pores reduce this value. According to Nimmo and Schenk (2006), the
porous or fractured nature of the satellites is unlikely to decrease the value of µ by more
than one order of magnitude (see their Fig. 6), so we consider 0.4 GPa ≤ µ ≤ 4 GPa for
both satellites and Eq. (5.31) yields10 1.12 × 10−5 ≤ κ2 ≤ 1.12 × 10−4 for Epimetheus and
2.74 × 10−5 ≤ κ2 ≤ 2.74 × 10−4 for Janus. These values are rough approximations and we
consider, for both satellites, κ2 = 10−4 if µ = 0.4 GPa and κ2 = 10−5 if µ = 4 GPa.

We now give a minimal value for the quality factor Q. According to the considerations
stated in the last paragraph of Sect. 5.2.3, the time-lag ∆t cannot exceed the time needed
for a seismic wave to travel through the satellite11. Calling K the bulk modulus, the
speed of sound is given by cs = ((K + 4µ/3) /ρ)1/2. Assuming K ∼ µ, the time lag ∆t
is majored by ∆t ≤ Rj/cs = Rj(3ρ/(7µ))1/2 and the quality factor Q complies with (Eq.
(5.44))

Q ≥ η−1R−1
j

√
7µ

3ρ
. (6.42)

10Using ρ = 618 kg/m3, Rj = 58.1 km and g = 0.0104 m/s2 for Epimetheus and ρ = 646 kg/m3,
Rj = 89.5 km and g = 0.0158 m/s2 for Janus.

11In practice, ∆t is much smaller than that.
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Assuming a typical frequency of excitation η ∼ 2 rad/day, µ = 0.4 GPa gives Q ≥ 914 for
Epimetheus and Q ≥ 580 for Janus, while µ = 4 GPa yields Q ≥ 2890 for Epimetheus and
Q ≥ 1835 for Janus. These are once again very rough estimates and we consider for both
satellites Q ≥ 1000 if µ = 0.4 GPa and Q ≥ 3000 if µ = 4 GPa. We thus have for Janus
and Epimetheus, and more generally for any satellite far from the hydrostatic equilibrium

κ
(j)
2

Qj

≤
{

10−7 if µ = 0.4 GPa,

0.3 × 10−8 if µ = 4 GPa.
(6.43)

In the case of the system Saturn−Janus−Epimetheus, the ratio of Eq. (6.1) verifies

ι1/3 κ
(0)
2 /Q0

κ
(j)
2 /Qj

≥
{

2.6 if µ = 0.4 GPa,

87 if µ = 4 GPa.
(6.44)

and tides raised on the central planet cannot be discarded since this ratio is not much
smaller than 1. It is unclear if it is much larger than 1 for this system, so we cannot say
if the two tidal contributions that we considered in the previous sections of this chapter
(tides raised on the orbiting bodies by the central body and interacted with by the central
body) can be discarded in this section. If they cannot, then the real parts given by Eqs.
(6.28) have to be added to the real parts given by Eqs. (6.61) in order to get to total tidal
contribution.

For a system composed of two large satellites (like the Galilean satellites) orbiting a
gas giant, κ

(j)
2 /Qj is of the order of 0.015 (see the value for Io in Table 5.1), while κ

(0)
2 /Q0

is rather of the order of 10−5 to 10−4 (see the values for Jupiter and Saturn in Table 5.1).
The ratio (6.1) is hence much smaller than 1 and tides raised on the central planet can be
discarded again, as if it was a star−planet−planet system, meaning that the results of
Sects. 6.2 & 6.3 apply.

6.4.2 Expression of the pseudo-Hamiltonian
As in Sect. 6.1.1, we write the tidal perturbation of the pseudo-Hamiltonian as

Ht = U
(11)
t + U

(22)
t + U

(12)
t + U

(21)
t + T, (6.45)

where U
(jk)
t is the contribution of tides raised by the satellite k on the planet and interacted

with by the satellite j, and T is the kinetic energy of rotation of the planet. We denote
R0 the radius of the planet and its rheology is characterized by its second Love number
κ

(0)
2 (Eqs. (5.35) & (5.36)) and its quality factor Q0 (Sect. 5.2.4). We have (Eq. (5.45))

U
(jk)
t = −κ

(0)
2 Gmjmk

R5
0

r3
j r⋆3

k

P2(cos S), T = Θ′2

2C0
(6.46)

with
S = λj − λ⋆

k − (θ − θ⋆) , (6.47)

where θ is the rotation angle of the planet, Θ′ = C0ω is the conjugated momentum of θ,
C0 = α0m0R

2
0 is the moment of inertia of the planet, ω = dθ/dt is its rotation rate, and
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α0 is a dimensionless structure constant depending on the state equation of the planet
(αj = 2/5 if it is homogeneous). Like in Sect. 6.1.1, we denote

z⋆ = z(t − ∆t0) (6.48)

for any quantity z. We repeat the calculations from Sect. 6.1.1 and we write the tidal
Hamiltonian Ht in the variables (J, J2, ξ, ξ2, Xj, X̄j). We define Θ = Θ′/(mā2η) in order
to normalise Θ′ (see Eq. (3.18)). We average U

(jk)
t over λj and λk and U

(jk)
t depends on

these angles through ∆λ(jk) only, where

∆λ(jk) = λj − λ⋆
k and ∆θ = θ − θ⋆. (6.49)

In virtue of Eq. (6.47), U
(jk)
t depends on θ through ∆θ only. We define the quantities

q0 = κ
(0)
2 ϙ

5
0, and ϙ0 = R0

ā
, (6.50)

and performing the rescaling (3.22), we get for Ht = Ht/(mā2η) the expression12

U (jk)
t = −q0η

mjmk

m0m
R−6

j R⋆−6
k

{
A

(jk)
t + D

(jk)
2 + D

(jk)
4

}
= U

(jk)
t

mā2η
,

T = η

2α0

m

m0

Θ2

ϙ20
= T

mā2η
,

(6.51)

where (Eq. (6.9))

D
(jk)
2 =B

(jk)
t

(
R−1

j XjX̄j + R⋆−1
k X⋆

kX̄⋆
k

)
+(RjR⋆

k)−1/2
(
C

(jk)
t XjX̄

⋆
k + C̄

(jk)
t X⋆

kX̄j

)
, (6.52)

and the coefficients A
(jk)
t , B

(jk)
t and C

(jk)
t are given by Eq. (6.10), substituting ∆λ(jk)

for ∆λj and ∆θ for ∆θj. The coefficient D
(jk)
4 contains the fourth order in eccentricity

and is given in appendix B.3, with the same substitution. As in Sect. 6.1.1, the pseudo-
Hamiltonian that we consider for the model is

H = HK(J, J2) + ιHP (ξ, X1, X2, X̄1, X̄2) + Ht, (6.53)

where HK is given by Eq. (6.12), the perturbation ιHP = H(0) + H(2) + H(4) is given by
Eq. (3.29) and

Ht =
2∑

j=1

2∑
k=1

U (jk)
t (J, J2, J⋆, J⋆

2 , ξ, ∆ξ, ∆ξ2, ∆θ, X, X⋆, X̄, X̄
⋆) + T (Θ), (6.54)

where X = (X1, X2), ∆ξ = ξ − ξ⋆ and ∆ξ2 = ξ2 − ξ⋆
2 .

6.4.3 Equilibria and eigenvalues
As in Sect. 6.1.2, we derive the equations of motion from the pseudo-Hamiltonian (6.53),
following the procedure described in Sect. 5.3 and using Eq. (3.23). The major difference
with Sect. 6.1 is the existence of crossed tides. While the Hamiltonian Ht depends only

12Rj(J, J2) is defined by Eq. (3.20) and m = √
m1m2.
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on λj − λ⋆
j in Sect. 6.1, we now also have a dependency on λj − λ⋆

k, where j ̸= k. As a
consequence, Ht depends on ξ in Eq. (6.54), whereas it did not depend on ξ in Eq. (6.13).
This new dependency complexifies immensely the differential system derived from the
pseudo-Hamiltonian, and while we were able to give it in a compact form in Eq. (6.15),
it is no longer possible to write the differential system in a readable form. Instead, we
merely linearize it in the vicinity of its equilibria.

Due to the conservation of the total angular momentum, the differential system derived
from the pseudo-Hamiltonian (6.53) only provides five independent equations for six
variables to locate the equilibria, and in order to have one unique equilibrium in the
vicinity of which we linearize the differential system, we again choose the arbitrary Eq.
(6.22). As explained in Sect. 6.2.1, the linearized system does not depend on the choice of
Eq. (6.22) at first order in ιq0. We define ϑ = 1 − ω/η and the Lagrangian equilibrium L4
is located at13

ϑ0 = X1,0 = X2,0 = 0,

ξ0 = π

3 + q0√
3

,

a1,0 = ā
(

1 + 2q0
m1 − m2

m0

)
,

a2,0 = ā
(

1 + 2q0
m2 − m1

m0

)
.

(6.55)

Let X0 = t (J2,0, ϑ0, J0, ξ0, X1,0, X2,0) and X = t (J2, ϑ, J, ξ, X1, X2). Linearized in the
vicinity of the Lagrangian equilibrium L4, the differential system derived from the pseudo-
Hamiltonian (6.53) reads

d

dt
∆X = (Q′

0 + Q′
1) ∆X, (6.56)

where ∆X = X−X0. The matrix Q′
0 derives from the conservative Hamiltonian HK + ιHP ,

while Q′
1 corresponds to the tidal contribution Ht. Because the dynamics of X1 and X2 is

uncoupled from the dynamics of the other variables, the matrices Q′
0 and Q′

1 are block
diagonal and take the form

Q′
0 =

(
Z ′

0 04×2
02×4 M′

0

)
and Q′

1 =
(

Z ′
1 04×2

02×4 M′
1

)
, (6.57)

where Z ′
0, M′

0, Z ′
1 and M′

1 are given in this Maxima worksheet. The set of eigenvalues of
Q0 is (Eq. (6.25))

{0, 0, iν, −iν, ig1, ig2} , (6.58)

where ν (Eq. (3.32)) is the libration frequency of ξ around L4 while g1 and g2 (Eq. (3.42))
are the precession frequencies of the pericentres in the eccentric eigenmodes anti-Lagrange
and Lagrange, respectively. The first 0 eigenvalue corresponds to the constancy of J2
(conservation of the total angular momentum), while the second one corresponds to the
constant rotation rate of the planet. Like in Sect. 6.2.1, all six eigenvalues of Q′

0 are pure
imaginary and the linearized system is quasiperiodic without tides.

13Or equivalently, J0 = 9
4q0

m (m1 − m2)
m0 (m1 + m2) and J2,0 = 9

8q0
(m1 − m2)2

m0m
.

https://jeremycouturier.com/img/M1Z1.wxmx
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We use the perturbative approach described in Sect. 2.4.2 to find the eigenvalues of
Q′

0 + Q′
1 at first order in ιq0. In order to alleviate the expression of the eigenvalues, it is

convenient to define, for integers p and q, the quantity

ℵq
p = p (m1 − m2)2 + qm1m2

m0 (m1 + m2)
. (6.59)

The set of eigenvalues of Q′
0 + Q′

1 is{
ϡ, 0, λ, λ̄, λAL, λL

}
, (6.60)

with

ϡ = 3η
q0

Q0
ℵ1

1

(
3 − α−1

0 ϙ
−2
0 ι
)

,

λ = 27
2 η

q0

Q0
ℵ1

0 + iν − iν
q0

8 ℵ−206
7 − 45

16iη2ν−1q0ι,

λAL = −225
8 η

q0

Q0
ℵ1

0 + ig1 + 3
8iηq0ℵ45

7 ,

λL = −3
8η

q0

Q0
ℵ37

28 + ig2 + 15
8 iηq0ℵ7

4.

(6.61)

The eigenvalues are no longer pure imaginary and we boxed the real parts. They are
proportional to the inverse quality factor Q−1

0 and as in Sect. 6.2.1, elastic tides do not
contribute to the real parts but only change slightly the fundamental frequencies. Due
to the conservation of the total angular momentum, the matrix Q′

0 + Q′
1 is singular and

one of its eigenvalues is zero. The eigenvalues λAL and λL, perturbations of ig1 and ig2,
respectively, have non-zero negative real parts and both eccentric eigenmodes Lagrange
and anti-Lagrange are damped to zero, as with the tides raised on the co-orbitals. Similarly,
the real part of λ and λ̄, perturbations of iν and −iν, are strictly positive, which once
again leads to an exponential increase of the libration amplitude of ξ when the system is
close to the Lagrangian equilibria L4 or L5.

A notable difference with Sect. 6.2.1 resides in the eigenvalue ϡ, associated with
the rotation of the central planet. While ϡ1 and ϡ2 were large negative in Sect. 6.2.1
(Eq. (6.28)), leading to a quick damping of the rotation rates of the co-orbitals, ϡ
is not necessarily negative, and can be of the same order of magnitude as the other
eigenvalues’ real parts. As a consequence, the rotation of the central planet does not
necessarily evolve on timescales much smaller than the timescale of eccentricity damping
and libration amplitude pumping. If ϡ < 0, then the system converges towards the
spin-orbit synchronization14, while ϡ > 0 means that the system diverges away from the
spin-orbit synchronization. There exists a critical semimajor axis āc beyond which (resp.
below which) ϡ < 0 and the system is stable (resp. ϡ > 0 and the system is unstable).
According to the value of ϡ in Eq. (6.61), such critical semimajor axis is given by

āc =
√

3α0ι−1R0. (6.62)
14Or towards the spin-orbit pseudo-synchronization at non-zero eccentricity.
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This result was reached in a completely different manner by Hut (1980). Hut studied
a binary system and showed that the Hessian of the Hamiltonian at the equilibrium
(circularity, coplanarity and spin-orbit synchronization) is positive-definite if, and only if,
ā ≥ āc, hence the result15. Hut’s result can be reformulated equivalently by saying that
the spin-orbit synchronization is stable if, and only if, the central planet contains in its
rotation at most 1/4 of the system’s total angular momentum. In the case of tides raised
on the co-orbitals, the eigenvalues ϡ1 and ϡ2 in Eq. (6.28) are always negative because
the co-orbitals, due to their low masses and radii, can never contain in their rotations
more than 1/4 of the total angular momentum.

Fig. 6.7 — Schematic representation of the trajectories of the co-orbital satellites in the case
of a non-synchronized planet. We distinguish the cases ās < āc (left) and ās > āc (right).
For visibility, the spiraling motion is largely exaggerated and only one co-orbital satellite is
represented.

When the ratio ω/η is below 1, then the co-orbitals are in advance (by an angle
(η − ω) ∆t0) with respect to the tidal bulges they raise on the central planet. The
subsequent torque increases ω and, by conservation of the total angular momentum,
decreases the semimajor axes. When ω/η > 1, ω decreases while the semimajor axes
increase. The ratio ω/η is below 1 (resp. above 1) if ā is smaller (resp. greater) than the
synchronous semimajor axis ās, given by

ās =
(Gm0

ω2

)1/3
. (6.63)

Four cases are possible :

• ā ≤ āc and ā ≤ ās. The planet’s rotation rate is sub-synchronous and ϡ > 0 : The
co-orbitals fall onto the planet.

15In Hut’s work, the expression of āc features m0/m1 instead of ι−1 = m0/ (m1 + m2).
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• ā ≤ āc and ā ≥ ās. The planet’s rotation rate is super-synchronous and ϡ > 0 : The
co-orbitals go to infinity.

• ā ≥ āc and ā ≤ ās. The planet’s rotation rate is sub-synchronous and ϡ < 0 : The
co-orbitals’ semimajor axes decrease and stabilize.

• ā ≥ āc and ā ≥ ās. The planet’s rotation rate is super-synchronous and ϡ < 0 : The
co-orbitals’ semimajor axes increase and stabilize.

The situation is illustrated in Fig. 6.7. For the system Saturn−Janus−Epimetheus, we
consider α0 = 0.22 (Fortney et al., 2018, Sect. 3.4.2) and a numerical evaluation yields
āc = 1.2 × 104 R0. The critical semimajor axis āc is larger than 12000 Saturn’s radii and
Janus and Epimetheus are largely below (The rotation of Saturn contains 99.999992 % of
the total angular momentum of the system Saturn−Janus−Epimetheus). Since Saturn is
super-synchronous (ω/η = 1.5813), we expect Janus and Epimetheus’ semimajor axes to
diverge to infinity under the influence of the tides they raise on Saturn (green plot in Fig.
6.7). Deimos around Mars is also in the green case while Phobos is in the black case and
the Moon around the Earth is in the orange case16.

6.4.4 Characteristic timescales
If, for the considered co-orbital system, the ratio (6.44) is found much larger than unity,
then the eigenvalues are given by Eq. (6.61) only. If it is of the order of unity, the
eigenvalues given by Eq. (6.28) have to be added to the eigenvalues given by Eq. (6.61).
Finally, if the ratio (6.44) is much smaller than 1, only the contributions of Eq. (6.28)
need to be considered and the timescales are given by Eq. (6.29). Once the eigenvalues
are established, the timescales, defined as the times needed for the associated eigenmodes
to be damped or pumped by a factor exp(1), are given by

τlib = T

2π |Reλ|
, τAL = T

2π |ReλAL|
, τL = T

2π |ReλL|
, τrot = T

2π |Reϡ|
. (6.64)

We have τlib = 25τAL/12 and as in Sect. 6.2.2, τlib is always of the same order as τAL and
anti-Lagrange-like system are nearly circular when old. While the ratio τAL/τL depends on
x = m1/m2 and y = q2Q1/(q1Q2) in Sect. 6.2.2, where tides were raised on the co-orbitals,
it now depends on x alone and reads

τAL

τL
= 37

75 + 28
75

(1 − x)2

x
. (6.65)

In Fig. 6.8, we plot the ratio τAL/τL. The equation τAL = τL has roots {x1, x2} ={
(47 ± 5

√
57)/28

}
≈ {0.3304, 3.0268}. Between the roots, τAL ≤ τL and the system is

Lagrange-like, while it is anti-Lagrange-like outside the roots (Sect. 3.2.2). In Sect. 6.2.2,
there exists values of x and y such that τAL ≪ τL (red-black regions in Fig. 6.1), and the
associated systems are very Lagrange-like and short-lived. Here, the ratio τAL/τL is never
smaller than 37/75 ≈ 1/2 and co-orbital systems are never very Lagrange-like when tides
are raised on the central body.

16Because of the Sun’s perturbations, the Moon will still leave the Earth’s Hill sphere.
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Fig. 6.8 — Value of the ratio τAL/τL as a function of x = m1/m2. Between (resp. outside) the
roots of τAL/τL = 1, the system settles in the Lagrange (resp. anti-Lagrange) configuration.

Given the value of ϡ in Eq. (6.61) from Sect. 6.4.3, the timescale τrot of convergence
to, or divergence away from, the spin-orbit synchronization is

• Of the same order of magnitude as the other tidal timescales if ā ≪ āc.

• Much larger than the other tidal timescales if ā ≈ āc.

• Much smaller than the other tidal timescales if ā ≫ āc.

6.5 Conclusion
In this chapter, we extended the work of Chap. 3 by considering tidal dissipation in our
model. We first proved that for a co-orbital system star−planet−planet, it is enough
to only consider tides raised by the star on the planets and interacted with by the star.
We built the pseudo-Hamiltonian of the co-orbital dynamics, including these types of
tides, and we gave the complete expression of the averaged equations of motion, at fourth
order in eccentricity. We provided three independent verifications of the differential
system (6.15), namely, the conservation of the total angular momentum (Sect. 6.1.3), the
pseudo-synchronization (Eq. 6.23) and the numerical simulations (Sect. 6.3).

We analytically computed the eigenvalues of the system in the vicinity of the Lagrangian
equilibria and we showed that these equilibria are made unstable by tides, leading to
the systematic destruction of the system by close encounters. The tidal evolution is
essentially dominated by three characteristics timescales. Two of them are responsible for
damping the proper modes of the eccentricity and the third one for pumping the libration
amplitude of the resonant angle λ1 − λ2. The lifetime of the system depends on the



90 Chapter 6. Tides in the planar three-body co-orbital problem

masses, radii, tidal parameters and semimajor axes, and we provided a precise analytical
expression that we applied to hypothetical cases in Table 6.1 and to the detection of
co-orbital exoplanets in Sect. 6.2.3. From the computation of the eigenvalues, we also
concluded that, depending on the parameters, the system can settle along the Lagrange
configuration, or along the anti-Lagrange one. The latter configuration is associated with
a long lifetime, while the former configuration is associated with a short lifetime.

The validity of the analytical work was established in Sect. 6.3, where we performed
numerical simulations of targeted systems, using our model as well as the complete
equations of motion of the N -body problem. These simulations show the great reliability
of the model, and due to the average over the mean motions, it is η/ν times faster to
integrate than the complete equations with similar CPU performances (27 times faster
with ι = 2 × 10−4), while also generating less oscillating curves.

The main achievement of this chapter was to provide an analytical proof of the
instability of the Lagrangian equilibria under tides and to give the timescale of destruction.
Recently, Dobrovolskis and Lissauer (2022) gave another proof with another model. They
consider a restricted problem where one of the co-orbitals, the only one where tides are
raised, is massless and point-mass. Although this approach does not allow them to provide
a destruction timescale and is limited to the restricted case, it allows them to prove the
instability of the Lagrangian equilibria without average over the mean longitudes nor
expansion in series of the eccentricities or around the Keplerian resonance.

Finally, we dedicated Sect. 6.4 to the case where tides raised by the co-orbitals on the
central body cannot be discarded, as it is the case with a system planet−satellite−satellite
made up of small satellites. We provided a complete discussion that allowed us to
determine which types of tides need to be taken into account, depending on the type
of system. We computed the eigenvalues in the vicinity of the Lagrangian equilibria in
the case of tides raised on the central body, and we inferred the associated timescales of
tidal evolution. We showed that these tides have a lot of similarities with those raised on
the orbiting bodies, as well as some proper characteristics, like the existence of a critical
semimajor axis that decides whether or not the spin-orbit synchronization is stable. This
last section is important to understand the stability of the co-orbital satellites of Saturn
and it will be explored in more details in a forthcoming study.



Chapter 7

Tides in the planar four-body
p : p : p + 1 resonance chain

Most results of this chapter were first published in Couturier et al. (2022).

7.1 Pseudo-Hamiltonian and equations of motion
In this chapter, we push further the work of Chap. 4 on the planar resonance chain
p : p : p + 1 by removing the point-mass approximation. Tidal dissipation due to the
distortion of the extended bodies is hence responsible for long-term changes on the
dynamics of the chain. We want here to investigate the effects of tides following the same
procedure that we used in Chap. 6, where we studied tides in the resonance chain 1 : 1.
More precisely, we want to

• Establish the pseudo-Hamiltonian of the averaged problem,

• Derive the equations of motion from the pseudo-Hamiltonian,

• Locate the equilibria of the averaged problem and linearize in their vicinity,

• Obtain stability and timescales results from the eigenvalues,

• Check the results given by the eigenvalues with numerical simulations.

The star and three planets have radii R0 to R3, respectively, and we use the same notations
as in Chaps. 4 & 6.

7.1.1 Pseudo-Hamiltonian
We study a four-body system star−planet−planet−planet and as we justified in Sect.
6.1.1, among the 4 (4 − 1)2 = 36 tidal contributions as given by Eq. (5.45), only three

91
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of them need to be retained. We thus write the perturbation to the Hamiltonian due to
tides as (Eq. (6.2))

Ht =
3∑

j=1
U

(j)
t +

3∑
j=1

Tj, (7.1)

where the tidal potential U
(j)
t and the kinetic energy of rotation Tj of planet j are given

by Eq. (6.3), conserving the same notations1. In particular, we reuse the notations
z⋆ = z(t − ∆tj) and ∆ς = ς − ς⋆ defined by Eqs. (6.5) & (6.6). We also denote (Eq. (6.7))
qj = κj

2ϙ
5
j and in this chapter we have

ϙj = Rj

a
(0)
j

, (7.2)

which coincides with the definition of Chap. 6, ϙj = Rj/ā, for j = 1, 2. We define Rj

similarly as in Eq. (3.20), that is

Rj =
 aj

a
(0)
j

1/2

= Λ̃j

Λ⋆
j

= CjΛj, (7.3)

where Cj is defined by Eq. (4.14), Λ⋆
j by2 Eq. (4.5) and Λj by Eq. (4.10). In Sect. 6.1.1, we

wrote the tidal Hamiltonian Ht in the variables (J, J2, Xj; ξ, ξ2, X̄j), but to be consistent
with the work of Chap. 4, we write it here in the variables (Dj, L, Γ, G; σj, ξ, ξ2, ξ3),
introduced in Sect. 4.1.1. As in Sect. 6.1.1, we normalize the action variable Θ′

j by
writing Θj = Θ′

j/Γ⋆, where the constant Γ⋆ is given by Eq. (4.9). In order to only consider
the secular (i.e. long-term) dynamics, we average U

(j)
t over λj and U

(j)
t depends on this

angle through ∆λj only. Similarly, U
(j)
t depends on θj through ∆θj only. We perform the

rescaling given by Eq. (4.10) and at second order in eccentricity, the tidal Hamiltonian
Ht = Ht/Γ⋆ reads

U (j)
t = −qj

m0

mj

n
(0)
j C−1

j R−6
j R⋆−6

j

(
A

(j)
t + D

(j)
2

)
= U

(j)
t

Γ⋆
,

Tj =
Cjn

(0)
j Θ2

j

2αjϙ
2
j

= Tj

Γ⋆
,

(7.4)

where (Eq. (6.9))

D
(j)
2 = B

(j)
t

(
R−1

j Dj + R⋆−1
j D⋆

j

)
+
(
RjR⋆

j

)−1/2
Re

(
C

(j)
t

√
DjD⋆

j ei∆ϖj

)
, (7.5)

and the coefficient A
(j)
t , B

(j)
t and C

(j)
t are given by Eq. (6.10). The total pseudo-

Hamiltonian that we consider for the model is then (Eq. (6.11))

H = HK(Dj, L, Γ, G) + ιHP (Dj, σj, ξ) + Ht, (7.6)
1Do not confuse Cj , defined below Eq. (6.4), with Cj , defined by Eq. (4.14).
2For the variables Λ⋆

j and Γ⋆, the superscripted star does not denote the evaluation at time t − ∆tj

but the value at the Keplerian resonance given by Eq. (4.5).
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where HK is given by Eq. (4.13), the perturbation ιHP = H(0) + H(1)
1,3 + H(1)

2,3 + H(2)
1,2 +

H(2)
1,3 + H(2)

2,3 by Eqs. (4.18), (4.19) & (4.20) and (Eq. (6.13))

Ht =
3∑

j=1
U (j)

t (Rj, R⋆
j , ∆ξ, ∆ξ2, ∆ξ3, ∆σj, ∆θj) +

3∑
j=1

Tj(Θj). (7.7)

The quantity Rj depends on Λj, that is on L, Γ, G and the Dj.

7.1.2 Equations of motion
The equations of motion are derived from the pseudo-Hamiltonian (7.6) using the Hamilton
Eqs. (2.18), following the procedure described in Sect. 5.3. The perturbation to the
vector field F0 (derived from the conservative Hamiltonian of Eq. (4.21)), due to tides
and at second order in eccentricity, reads

Ḋj = 3n
(0)
j Dj

m0

mj

R−13
j

qj

Qj

(12ωj + 57Rj − 76) ,
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1
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j
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mj

qjR−13
j ,
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2η
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1
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Λ1
− 3

2η
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m2
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2
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Λ2
,
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3
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j
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(0)
3
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m0

mj

R−13
j

qj
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Ġ =
3∑

j=1
3n

(0)
j

m0

mj

R−13
j

qj

Qj

{ωj (Λj + 15Dj) + (3Rj − 4) (Λj + 27Dj)} ,

ω̇j = −3n
(0)
j Cjα

−1
j ϙ

−2
j

m0

mj

R−13
j
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Qj

{ωj (Λj + 15Dj) + (3Rj − 4) (Λj + 27Dj)} ,

(7.8)

where we posed ωj = ω′
j/n

(0)
j . Since the differential system does not depend on ξ2 and ξ3

and as the dynamics of these fast-circulating angles are of no interest to us, the lines ξ̇2
and ξ̇3 are absent from the differential system (7.8). The system (7.8) only contains the
tidal perturbations, and the total differential system that we consider for our model is
the one derived from the Hamiltonian (4.21), F0, to which we add the tidal perturbations
(7.8). We denote it F : R13 7→ R13.

7.2 Pseudo-equilibria and linearization

7.2.1 The eigenvalues
As explained at the beginning of this section, we want to find the equilibria of F and to
study the linearized dynamics in their vicinity. However, although F0 has many equilibria
(Table 4.1), we show that F has none. The last five lines of Eqs. (7.8), those corresponding
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to Γ̇, Ġ, ω̇1, ω̇2 and ω̇3, cannot all vanish if Dj ̸= 0. Indeed, if the planets are all
synchronized, that is, if the ω̇j all vanish3, then Γ̇ < 0 and

Γ̇ ≈ −
3∑

j=1
21nj,0

n3,0
nj,0

m0

mj

qj

Qj

Dj ∝ −
3∑

j=1

m0

mj

qj

Qj

e2
j . (7.9)

However, F0 has no equilibria at Dj = 0 (Table 4.1) and does not contribute to these five
lines. We thus conclude that F has no equilibria. This result contrasts with the case of
co-orbitals without companion, studied in Chap. 6. Indeed, the differential system (6.15),
that governs the averaged dynamics of the resonance chain 1 : 1 under tidal dissipation,
does have equilibria. This is because the conservative part of the differential system (6.15),
derived from the Hamiltonian HK + ιHP in Eq. (6.11), has equilibria at zero eccentricity,
that is, at Dj = 0, whereas all the equilibria of F0 are at non-zero eccentricity.

We call pseudo-equilibrium of F , or pseudo-fixed point of F , a point X ∈ R13 such that
F (X) = t

(
0, 0, 0, 0, 0, 0, 0, 0, Γ̇(X), 0, 0, 0, 0

)
. Even though it does not have equilibria, F

has pseudo-equilibria, and we find them using an extension of the Newton–Raphson-based
algorithm that we developed for Sect. 4.3.2. In the case of the resonance chain p : p : p+1,
the variable Γ, that many authors refer to as scaling parameter (Michtchenko et al., 2008;
Delisle, 2017; Petit et al., 2020), drifts along the branches of pseudo-equilibria of F . In the
case of the co-orbital resonance 1 : 1 however, the scaling parameter is4 J2, and while this
quantity drifts at a random point of the phase space, it does not drift along the branches
of equilibria of the differential system (6.15).

Equation (7.9) shows that, on a branch of pseudo equilibria of F , the parameter Γ
(and thus the parameter δ, see Eq. (4.35)) drifts at a speed proportionnal to the square of
the eccentricities. This means that, with tides, the system travels along the main branch
from right to left in Fig. 4.2 (Delisle et al., 2014) much more quickly when δ > 0 than
when δ < 0 (due to high eccentricities for positive δ). As the system travels, whether or
not it stays close to the main branch or moves away depends on the linear stability of the
differential system F in the vicinity of the branch. That is, it depends on the real parts
of the eigenvalues of the linear system associated with F (Sect. 2.4.1). Since Γ is not
constant at the pseudo-fixed points, but drifts at a speed given by Eq. (7.9), computing
the eigenvalues of the linearized system makes sense only if Γ drifts slowly enough, that
is, only if ∣∣∣Γ̇∣∣∣ ≪ max

1≤k≤13
|Reλk| , (7.10)

where the λk are the eigenvalues of the linearized system. Indeed, |Γ̇|−1 is the timescale
of evolution of Γ, while (maxk≤13 |Reλk|)−1 is the timescale of tidal evolution. When the
criterion (7.10) is fulfilled, Γ can be considered constant on the timescale of tidal evolution,
and the real parts of the linearized system have physical meaning.

Branch 3 always has high eccentricities (see Fig. 4.3) and exists only for δ > 5.997.
The drift in δ towards negative values is fast at high eccentricity (see Eq. (7.9)), and so
branch 3 is tidally very unstable and uninteresting to us. Branch 2 has low values of the
eccentricities at large δ, but the existence of a hyperbolic zone at 5.55 ≤ δ ≤ 5.80 (see
Table 4.1) makes it uninteresting as well since the drift ensures that this zone is reached.
Hence, we limit the study of tidal dissipation to the main branch (branch 1).

3Then, Ġ also vanishes, since Ġ +
∑

j αjϙ
2
jC−1

j ω̇j = 0 by conservation of the total angular momentum.
4In a resonance chain, the scaling parameter is the momentum associated with the averaged fast angle.
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Fig. 7.1 — Real parts of the eigenvalues of the linearized system associated with F in the
vicinity of its main branch of pseudo-equilibria, for −7 ≤ δ ≤ 1 (left) and −6.2 ≤ δ ≤ −5 (right).
The planetary masses are as in Fig. 4.2, the resonance chain is 1 : 1 : 2 and the tidal parameters
are those of system 1 in Table 7.1. Only the four eigenvalues (actually eight, counting their
complex conjugated) associated with the four degrees of freedom of the conservative system are
represented. The five other eigenvalues, associated with the three rotation rates ωj , with the
total angular momentum, and with Γ, are of no interest. The real parts behave erratically at
the 1 : 1 secular resonance between ν and ν3 (see Fig. 4.2), in such a way that all of them are
negative for −5.64 ≤ δ ≤ −5.47, yielding a linear stability in this region (Sect. 2.4.1). In the
region δ ≤ 1 we have |Γ̇|/Reλ ≤ 0.012, and the criterion (7.10) is very well respected. Similar
figures with other planetary masses are available in Sect. 7.3.4.

7.2.2 The linearly stable region

As explained in Sect. 4.3.1, it is not possible to give analytically the equilibria of F0, and
so a fortiori, it is not possible to give the equilibria of F . Consequently, it is clear that
the eigenvalues of the differential system F , linearized in the vicinity of the main branch,
cannot be given analytically. In particular, the perturbative approach described in Sect.
2.4.2 is of no help here, since we do not have an analytical expression of a diagonal basis
of M0 in Eq. (2.82). This is a notable difference with the case of the co-orbital resonance
1 : 1 for which we were able to give analytical expressions of the eigenvalues with tides
(Eq. (6.28)).

We work numerically instead, and in Fig. 7.1 we plot the real parts of the eigenvalues
of the linearized system associated with F , along its main branch of pseudo equilibria,
which is a little perturbation of the main branch of equilibria of (4.21). To guarantee that
the condition (7.10) is well respected, we limit ourselves to δ < 1. This is not really a
restriction since tides ensure that this region is quickly reached. Only the eigenvalues that
are the extension of Eqs. (4.38) & (3.32) are plotted. In the absence of a third planet, we
showed with Eq. (6.28) that the eigenvalue responsible for the exponential increase in the
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Fig. 7.2 — Position of the linearly stable region for the resonance chain 1 : 1 : 2 in the plane
(m3, δ). For every point in this plane the eigenvalues of the linearized system associated with
the vector field F are computed, and the point is plotted only if all the real parts are negative
(actually, if they all are less than 0.05Reλ). The co-orbital masses are m1 = m2 = 10−4 and the
tidal parameters are those of the system 0 in Table 7.1. The position of the linearly stable region
weakly depends on m1/m2 and on the tidal parameters. The colour gives n1/n3 and shows that
the chain stabilizes the dynamics far from the Keplerian resonance (for which n1/n3 = 2). The
dashed yellow line plots the secular 1 : 1 resonance between ν and ν3, computed with Eqs. (4.39)
and (4.30), respectively. For m3 > 18 (m1 + m2), the linearly stable region disappears, while for
m3 < 0.29 (m1 + m2), two distinct linearly stable regions exist, whose widths tend to 0 with m3.

libration amplitude of ξ, and thus for the destruction of the co-orbital motion, has a real
part

Reλ = 9
2η

m0

m1 + m2

(
m1

m2

q2

Q2
+ m2

m1

q1

Q1

)
, (7.11)

and so we normalize by this quantity in Fig. 7.1 and Sect. 7.3.4. The region within
−5.64 ≤ δ ≤ −5.47, at the 1 : 1 secular resonance between ν and ν3 (i.e. between
the libration frequency of the co-orbitals and the frequency of all the pericentres at the
pseudo-equilibria), is such that all the eigenvalues of the system have negative real parts,
and we thus expect this region to be linearly stable5 (Sect. 2.4.1). We show in Sect. 7.3.2
that this is indeed the case. The linear stability is only temporary though, since the drift
in δ ensures that this region is eventually left. We call it the linearly stable region in
the remainder of this work. The range in δ corresponding to the linearly stable region
strongly depends on the ratio m3/ (m1 + m2). In Fig. 7.2 we display its position in the
plane (m3, δ).

5Even though it is slightly chaotic far from the main branch, according to the map in Fig. 4.6.
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7.3 Numerical simulations
In this section we investigate the ability of our model to predict the behaviour of a system
in the p : p : p + 1 resonance under tidal dissipation. We especially check the results
drawn in Sect. 7.2.2 on the linearized dynamics in the vicinity of the main branch and
the existence of a linearly stable region. In Sect. 7.3.4, we investigate the influence of m3
on the co-orbital dynamics.

7.3.1 Procedure
We numerically integrate two different sets of equations. The first set, our model, is the
differential system F , that is, the vector field F0 derived from the conservative Hamiltonian
(4.21), to which we add the tidal perturbations given by Eqs. (7.8). The second set is
a n-body unaveraged and unexpanded model in the regular position-speed coordinates,
with the constant-∆t model, given by Eq. (C.13) of appendix C.4.

When the third planet is absent, we showed in Sect. 6.2.2 that the relevant parameters
to consider to predict the destruction time of a system of two co-orbital planets are (Eq.
(6.2.2))

Ω = q1

Q1
+ q2

Q2
, x = m1

m2
, y = q2Q1

q1Q2
, and ι = m1 + m2

m0
, (7.12)

namely the total dissipation rate, the co-orbital mass ratio, the dissipation rate ratio, and
the planet-to-star mass ratio. Since we are interested in comparing the lifetimes of the
co-orbitals when they are inside the resonance chain 1 : 1 : 2 with their lifetimes when
they are alone, we make use of these parameters. As explained in Sect. 7.2.2, we do not
have analytical expressions depending on the parameters of the lifetime of the system,
and trying to draw a complete picture would require a very large number of simulations.
Instead, we are interested in performing a small number of simulations with parameters
that we judge interesting. Thus, in order to check the semi-analytical results obtained
in Sect. 7.2.2, we only show the evolution of two systems for the chain 1 : 1 : 2, whose
parameters are given in Table 7.1. Nevertheless, we performed additional simulations with
different choices for the planetary masses and the initial δ. The most interesting ones are
presented in Sect. 7.3.4, where we thoroughly discuss the influence of larger or smaller
values for m3.

For the systems listed in Table 7.1, the chosen value of δ is such that the beginning
of the simulations is at the rightmost point of the linearly stable region; these regions

# Ω x y ι δ

0 4 × 10−12 1 1 2 × 10−4 −5.51
1 4 × 10−12 1/10 100 2 × 10−4 −5.46

Table 7.1 — Parameters of the two numerical simulations of Figs. 7.3 & 7.4. In this table, the
chosen value of δ is that of the maximum of the region where all the real parts are negative,
ensuring that the system crosses the whole linearly stable region. The rotations rates ωj are
initially synchronized and both sets of parameters verify m3/m0 = 10−4, κ

(3)
2 = 0 and ā = 0.02

AU. System 1 is the system that was used for all the figures in Chap. 4 and Sect. 7.2.
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Fig. 7.3 — Evolution of ξ and the σj (in arc degrees) as a function of time for system 1 (see
Table 7.1) as integrated by the simplified model F (Eqs. (4.21) & (7.8)) (top) and the direct
n-body simulation (C.13) (bottom). In the direct simulation horseshoe-shaped orbits are reached
after 6.42 τhs, and the co-orbital motion is destroyed shortly after that (chaoticity in Fig. 4.6).
The model reaches the horseshoe-shaped orbits at t = 13.1 τhs. Here, the presence of the chain
increases the lifetime of the co-orbitals by a factor of 6.42. The thickness of the lines in the
bottom plot (e.g. σ3) is due to the short-period oscillations that were averaged out in the model.
The grey-shaded area is the linearly stable region, that the system leaves at t = 0.2 τhs.

are −5.67 ≤ δ ≤ −5.52 for system 0 and −5.64 ≤ δ ≤ −5.47 for system 1 (see Fig. 7.1).
These systems are thus expected to be initially very stable until they leave this region
(due to the drift in δ, see Sect. 7.2.1).

To integrate the two systems with the simplified model F (Eqs. (4.21) & (7.8)), we
find, for the given value of δ and the planetary masses, the position of the fixed point of
F0 along the main branch, and use it as initial condition for the integration, with a shift
∆ξ = 0.1◦ in ξ, in order to not start exactly at the fixed point. The pseudo-fixed point of
F is very close to the fixed point of F0, and we ignore the difference. To integrate the
system with the complete n-body set of Eqs. (C.13), we find, for the given value of δ and
the planetary masses, the position of the libration centre along the main branch with the
algorithm described in Sect. 4.2.2, and use it as the initial condition for the integration,
again with the shift ∆ξ = 0.1◦.

7.3.2 Increased co-orbital life inside the resonance chain
When the co-orbital planets are alone, the positivity of Reλ in Eqs. (7.11) & (6.28) ensures
that the system systematically reaches the horseshoe-shaped orbits and is destroyed by
close encounters (Fig. 6.3). In this case the time τhs needed to reach the horseshoe-shaped
orbits is given by Eq. (6.40), while the time τdest until destruction is close to τhs for a
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Fig. 7.4 — Evolution of ξ and the σj (in arc degrees) as a function of time for system 0 as
integrated by the simplified model F (Eqs. (4.21) & (7.8)) (top) and by the direct n-body
simulation (C.13) (bottom). In the direct simulation the horseshoe-shaped orbits are reached
after 7.8 τhs, and the co-orbital motion is destroyed shortly after that (chaoticity in Fig. 4.6).
The model reaches horseshoe-shaped orbits at 8.1 τhs. The grey-shaded area is the linearly stable
region, that the system leaves at t = 1.05 τhs.

large range in ι (Sect. 6.2.3), and we approximate τhs ∼ τdest. In order to better compare
the co-orbital lifetime inside and outside the chain p : p : p + 1, we normalize the time by
τhs in Figs. 7.3, 7.4, 7.5, and in Sect. 7.3.4.

In Figs. 7.3 and 7.4 we plot the angles ξ and σj as a function of time. The system
spends a large amount of time close to the main branch of equilibria, which allows the
co-orbitals to live notably longer with the presence of the third planet. This can be seen
from the destruction occurring at a time t > τhs. When the system crosses the linearly
stable region, the libration amplitude of ξ decreases instead of increasing exponentially,
since the real parts of all the eigenvalues of the linearized system associated with F are
negative. When the system leaves this region due to the drift in δ and the real part of
one eigenvalue becomes positive again, the libration amplitude of ξ is much smaller than
it was before entering the linearly stable region. As a result, the system needs more time
to reach large libration amplitudes and settle in horseshoe-shaped orbits, which delays
the co-orbital destruction; in other words, crossing the linearly stable region while being
sufficiently close to the main branch (so that the linear dynamics dominate) guarantees a
co-orbital lifetime longer than without the third planet.

In Fig. 7.3, the negative real parts of all the eigenvalues in the linearly stable region
allow the libration amplitude of ξ to reach values as small as 1.8 arcseconds at t = 0.57 τhs.
This minimum happens after the linearly stable region is left since the proper mode
associated with the newly positive real part (in yellow in Fig. 7.1) has been completely
damped by the linearly stable region and some time is needed to pump it noticeably.
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Fig. 7.5 — Value of e1 as a function of time for system 1 in Table 7.1, as integrated by
the simplified model F (Eqs. (4.21) & (7.8)) (bottom), and a schematic representation of the
eccentricity vector e1eiϖ1 , for four particular times (top). The schema explains the different
stages of the eccentricity damping stabilization mechanism. The drift in δ brings the centre of
the circle drawn by e1eiϖ1 (equilibrium value of e1 along the main branch) closer to the origin
(see Fig. 4.2).

Similarly, in Fig. 7.4, 3.5 arcseconds of libration amplitude are reached at t = 1.95 τhs. In
the bottom panel of Fig. 7.7 from Sect. 7.3.4, we display the important damping of ξ.
The early augmentation of the libration amplitude of the angles in the bottom plot is due
to the fact that in the complete simulation (C.13), the linearly stable region is not exactly
at the same values of δ as in the simplified model.

7.3.3 The eccentricity damping stabilization mechanism
The linearly stable region is not the only reason why co-orbitals in resonant chains can live
longer. Another phenomenon, which we refer to as eccentricity damping stabilization in
the rest of this work, allows the libration amplitude to not cross the separatrix leading to
horseshoe-shaped orbits. After an exponential increase in the libration amplitudes of ξ and
σj , due to at least one eigenvalue with a strictly positive real part, the amplitudes suddenly
decrease and the system returns close to the equilibria. This stabilization of ξ, due to
eccentricity damping (see Fig. 7.5), can happen several times before horseshoe-shaped
orbits are finally reached, and the system is destroyed (see Fig 7.4).

The explanation of the eccentricity damping stabilization relies on the behaviour of
the eccentricities. In Fig. 7.5, we plot the eccentricity e1 of planet 1 as a function of time,
together with a schema of its behaviour in the plane (e cos ϖ, e sin ϖ). At time t = t1 the
system is still close to the fixed points, hence the quantity e1e

iϖ1 (or any of the two other
eccentricities) describes a circle of small radius. Outside the linearly stable region, the
eigenvalues of the linearized systems have one positive real part, and as time evolves the
radius of the circle grows, while its centre, the equilibrium position of e1e

iσ1 , gets closer
to the origin due to the drift in δ (the eccentricities are smaller on the main branch at
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small δ-values, see Fig. 4.2). At time t > t2 the circle e1e
iϖ1 surrounds the origin and

keeps growing, as predicted by the eigenvalues, which triggers a jump in the eccentricity.
On the one hand, the linearized system predicts that the circle drawn by e1e

iϖ1 grows
to infinity; on the other hand, tides impose an exponential decay of the eccentricities.
Indeed, the first line of Eqs. (7.8) yields (Correia, 2009)

ėj = −ej

τj

, τj = 2
21

mj

m0

Qj

qj

1
n

(0)
j

, (7.13)

and so, at time t = t3, the circle reaches its maximum radius, the system is now far from
its equilibrium, and tides, through non-linear contributions of the vector field F , force the
eccentricities to decrease. At t = t4, the system has returned into the vicinity of the main
branch, where the libration amplitude of the σj, but also of ξ, is small. In Figs. 7.3 and
7.4, several occurrences of the eccentricity damping stabilization prevent the angle ξ from
reaching the horseshoe-shaped orbits and increase the lifetime of the co-orbital planets.

While the stability induced by the linearly stable region comes from linear contributions
of the vector field F , the eccentricity damping stabilization comes from non-linear contribu-
tions. This latter mechanism works thanks to a strong coupling between the eccentricities
(Dj; σj) and the co-orbital angle (L; ξ). In the region δ < 0 (tidally interesting), at most
one eigenvalue has a positive real part (see Fig. 7.1), but due to the coupling, it allows an
exponential growth of the libration angle ξ, as well as the eccentricities, which makes the
eccentricity damping stabilization possible. When the time t = t3 is reached, the coupling
ensures that the eccentricity damping also induces a damping of the libration angle ξ,
hence the stabilization of the co-orbital motion. In the absence of the third planet, we
showed in Sect. 6.2.1 that the eccentricities are uncoupled from the co-orbital angle ξ
(the matrix Q0 + Q1 is block diagonal). This means that the positive real part Reλ
(Eqs. (7.11) & (6.28)) associated with (L; ξ) does not induce an exponential growth of
the eccentricities, which are on the contrary damped to 0 due to the negative real parts of
their eigenvalues. In this case, because of the decoupling, even if some other mechanism
increases the eccentricities, the eccentricity damping predicted by Eq. (7.13) still occurs,
but it does not induce a stabilization of ξ.

The occurrence of the eccentricity damping stabilization is not systematic. It occurs
only if the time t = t3 happens before the co-orbital planets reach horseshoe-shaped
orbits. If not, the co-orbital configuration is destroyed before the exponential decrease
in the eccentricities can save it. Figures 7.8 & 7.9 from Sect. 7.3.4 give examples of
systems where the eccentricity damping stabilization fails (systems 3, 4 and 6 in Table
7.2). Deciding whether or not a given system will be saved by the eccentricity damping
stabilization requires to know the proper modes of the linearized system associated with
F and how (L; ξ) and the (Dj; σj) are written in the corresponding diagonal basis. Only
a numerical work is possible, and we did not undertake it since it is much easier to simply
run the corresponding numerical simulation.

If a larger initial δ-value is chosen in these simulations, the system initially has at
least one positive real part and moves away from the fixed point at exponential speed.
If the eccentricity damping stabilization works, or if the initial δ-value is small enough,
the linearly stable region is reached. However, if the system reaches the linearly stable
region when it is too far from the equilibria, the non-linear contributions of F , combined
with the chaotic motion induced by the 1 : 1 secular resonance between ν and ν3 (see
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Fig. 7.6 — Evolution of ξ and the σj for m3 = 8 (m1 + m2) (left) and real parts of the
eigenvalues in the vicinity of the main branch (right).

the stability map in Fig. 4.6), can lead to peculiar orbits (e.g. switching between the
Lagrangian equilibria L4 and L5, that is, a permutation of the co-orbitals). Entering
the linearly stable region while still close enough to the equilibria ensures a convergence
towards the main branch, and thus an increased stability.

It can be seen in Fig. 4.5 that for δ = −5.46 the system is already far from the
exact resonance. For system 1 at δ = −5.46, we have n1/n3 = 2.072. As time goes by,
δ drifts towards more negative values, and at t = 6.42 τhs, when it is about to reach
horseshoe-shaped orbits and be destroyed, system 1 verifies δ = −13.77 and n1/n3 = 2.186.
Similar considerations are valid for system 0, which means that the system is already
outside the resonance, but it is still influenced by the chain. As the system leaves the
resonance due to the drift in δ, the coupling between the eccentricities and ξ becomes
weaker, meaning that the eccentricity damping stabilization ends up failing, although it
can still work for values of n1/n3 as high as 2.6. This prevents the co-orbitals from living
forever. Only positive values of δ allow for n1/n3 a value close to (p + 1) /p = 2 (see Fig.
4.5). When a positive value of δ is chosen at t = 0, the quick drift in δ due to the high
values of the eccentricities (Eq. (7.9)) forces the system to reach the region δ < 0 on
a timescale generally shorter than 1/Reλ, where it can be saved by the linearly stable
region. For systems on the main branch, this means that tides favour for the ratio n1/n3
values above their Keplerian value. This result was shown by Delisle et al. (2014) for a
two-planet chain and is confirmed by the observations of the Kepler mission, where a
large number of exoplanets were discovered with a mean motion ratio slightly higher than
(p + 1) /p (e.g. Delisle and Laskar, 2014).

This section shows that our averaged model (Eqs. (4.21) & (7.8)) is able to satisfyingly
predict the tidal evolution of a resonance chain of the form p : p : p+1, at least qualitatively,
since a precise quantitative description can only be achieved by running the simulation of
the complete set of Eqs. (C.13). This contrasts with the 1 : 1 mean motion resonance
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Fig. 7.7 — Evolution of ξ and the σj for m3 = 0.29 (m1 + m2) (left) and real parts of the
eigenvalues in the vicinity of the main branch (right).

alone, that we studied in Chap. 6, where the secular model is able to quantitatively
predict the outcome of the complete simulations of the unaveraged system with less than
1% relative error (Fig. 6.3 & Table 6.3).

7.3.4 Influence of the mass of the third planet
In this section, we present the six most interesting simulations that were not shown
earlier in Sect. 7.3. We particularly focus on the influence of the mass m3 on the co-
orbital dynamics. All the simulations comply with m1 = m2 = 10−4 m0, and their tidal
parameters are those of system 0 in Table 7.1. We only integrate here the simplified model
F (Eqs. (4.21) & (7.8)), defined at the end of Sect. 7.1.2.

For each simulation, the real parts of the eigenvalues of the linearized system associated
with F are shown alongside the time evolution of the angles ξ and σj . In the figures of the
real parts, a dashed vertical black line shows the starting value of δ of the corresponding
simulation. In the figures of the angles, a grey-shaded area shows the linearly stable region,
when relevant. Choosing other tidal parameters does not significantly modify the figures
shown here, since we normalize the real parts by Reλ (Eqs. (7.11) & (6.28)) and the
times by τhs (Eq. (6.40)), which is the time to reach horseshoe-shaped orbits (close to
the destruction time) in the absence of a third planet (Sect. 6.2.3). The mass of the
third planet, m3, and the value of δ at t = 0, denoted by δ0, are the only two varying
parameters between the different simulations, and these two quantities are also the axes
of Fig. 7.2 that displays the linearly stable region. The parameters m3 and δ0 of the six
systems integrated here are given in Table 7.2. For each δ0 and m3, the simulation starts
at the corresponding point of the main branch, with a shift ∆ξ = 0.1◦ to ξ, in order not
to start exactly at the equilibrium.

In Fig. 7.6, we have m3 = 8 (m1 + m2), which corresponds to the value yielding the
largest linearly stable region (Fig. 7.2). However, for this choice of m3, the linearly stable
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Fig. 7.8 — Evolution of ξ and the σj for m3 = (m1 + m2) /32 (left) and real parts of the
eigenvalues in the vicinity of the main branch (right).

region is located at larger values of δ, which then drifts quickly (Sect. 7.2.1). Furthermore,
Eq. (7.9) shows that the drift in δ is proportional to ∑j m

2/3
j , and so, a rather large

m3-value is responsible for a quicker drift. Despite the linearly stable region being thickest
for this value of m3, system 1 leaves it after less than 0.1 τhs, much more quickly than
in Fig. 7.7, where m3 is smaller. The amplitude of libration of ξ, ∆ξ = max(ξ − ξeq),
reaches 0.07◦ at its lowest, not significantly smaller than its initial value of 0.1◦. However,
for this choice of m3, the eccentricity damping stabilization is very efficient and occurs
seven times, yielding a co-orbital lifetime of 8 τhs.

In Fig. 7.7, we have m3 = 0.29 (m1 + m2), which is the best compromise between
the width of the linearly stable region and the speed of the drift in δ. System 2 stays
in this region for nearly 2 τhs, 20 times longer than system 1 in Fig. 7.6. The linearly
stable region is so efficient that at t = 3.2 τhs, the libration amplitude of ξ reaches ∆ξ = 4
milliarcseconds, gaining a factor ∼ 80 000 from the initial ∆ξ = 0.1◦. The system stays
close to the main branch for 6 τhs, which is longer than any other simulation that we
performed. We also display in Fig. 7.7 a zoomed-in view of ξ close to the main branch to
better visualize the damping of its libration amplitude. At time t ∼ 1 τhs, ∆ξ temporarily
stops decreasing and even slightly increases. Indeed, for this value of m3, the linearly
stable region splits into two distinct strips (Fig. 7.2), and in the middle of the region, the

1 2 3 4 5 6
m3/ (m1 + m2) 8 0.29 1/32 1/32 22 22

δ0 −1.466 −6.66 −10.735 −10.6 −1.3 −7.4

Table 7.2 — Parameters of the six systems integrated in Sect. 7.3.4. All six systems verify
m1 = m2 = 10−4 m0, and their tidal parameters are those of system 0 in Table 7.1.
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Fig. 7.9 — Evolution of ξ and the σj for m3 = 22 (m1 + m2) (left) and real parts of the
eigenvalues in the vicinity of the main branch (right).

real part of λ2 (the blue eigenvalue in Fig. 7.7) temporarily becomes slightly positive and
reaches 0.067Reλ. This is in perfect agreement with the slight increase observed for ∆ξ.
The eccentricity damping stabilization is not as efficient as it was for system 1, but still
allows the system to reach 8.5 τhs before the destruction of the co-orbital motion.

In Fig. 7.8, we have m3 = (m1 + m2) /32. With such a low mass for the third planet,
the two linearly stable regions are extremely narrow, and the linear stability occurs only if
the system is exactly at the 1 : 1 secular resonance between ν, the libration frequency of ξ
(Eq. (3.32)), and ν3, the precession frequency of the ϖj (Eq. (4.30)). With such a tiny
difference on δ0, the initial conditions between system 3 and system 4 are very close, but
the outcomes are completely different, as system 3 lives three times longer than system 4.
Outside the 1 : 1 secular resonance between ν and ν3, the unique positive real part is equal
to Reλ and the horseshoe-shaped orbits are reached at τhs exactly, as in the absence of
the third planet. This is consistent with the small value of m3. The eccentricity damping
stabilization fails for both systems.

In Fig. 7.9, the third planet has a mass m3 = 22 (m1 + m2) and the linearly stable
region does not exist (Fig. 7.2). We perform a simulation at the 1 : 1 secular resonance
between ν and ν3, where it would have been if it existed. In this region the positive
real parts are not greater than Reλ, and with the action of the eccentricity damping
stabilization, system 5 is destroyed after more than 3 τhs. However, system 6 is very
far from the Keplerian resonance and λ4 (the yellow eigenvalue in Fig. 7.9) has a real
part 4Reλ. This means that this system reaches the horseshoe-shaped orbits after a
time τhs/4 only. Furthermore, since (L, ξ) and (Dj, σj) are weakly coupled far from
the Keplerian resonance, the eccentricity damping stabilization fails, leading to a very
premature destruction of the co-orbital motion (the co-orbitals would have lived four
times longer without the third planet). Choosing a smaller δ or a larger m3 leads to an
even quicker destruction.

In this subsection, we showed that the linearly stable region is most efficient in
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preventing the destruction of the co-orbitals at low to intermediate values of m3, while the
eccentricity damping stabilization works best at moderately large values of m3, especially
if the system is not too far from the Keplerian resonance (δ not too negative). Generally,
a first-order mean-motion resonance with an outward third planet either increases or does
not change the co-orbital lifetime. The third planet can nevertheless lead to a premature
destruction if it is much more massive than the co-orbitals and far from the mean-motion
resonance.

7.4 Discussion and conclusion

In this chapter we pushed further the study of the resonance chain p : p : p + 1, started in
Chap. 4, where an outer third planet is in a first-order mean motion resonance with the
pair of co-orbital planets. We took into account dissipation due to tides and we built the
pseudo-Hamiltonian of the problem, from which we derived the complete expression of
the averaged equations of motion, at second order in eccentricity.

In the conservative case, the secular 1 : 1 resonance between the libration frequency of
the co-orbital angle and the precession frequency of the pericentres tends to destabilize
the chain by chaoticity. When tidal dissipation is involved though, we showed that this
secular resonance greatly stabilizes the chain by making negative the real part of the
eigenvalues in the vicinity of the main branch of equilibria. This negativity of the real
part is responsible for the existence of a value for n1/n3, close to the secular resonance,
around which the libration amplitude of the co-orbital angle λ1 − λ2 is damped to zero.
As a consequence, the lifetime of the co-orbital pair is noticeably longer with the presence
of the third planet. For the chain 1 : 1 : 2, this linear stability generally occurs near
n1/n3 ∼ 2.07. Another stabilization mechanism, due to eccentricity damping, is presented
and explained. The model that we built is able to predict the position of the libration
centres of the complete system. When tides are involved, the model reliably gives the
qualitative behaviour of the system and, to a certain extent, its quantitative behaviour.
This work shows that when tidal dissipation is included, co-orbital systems are more
stable if they are inside a resonance chain of the form p : p : p + 1, rather than alone,
which increases the chances of a future detection of a co-orbital pair of exoplanets.

One important contribution of the work done in Chaps. 4 & 7 is the discovery of
the 1 : 1 secular resonance between the libration of λ1 − λ2 and the precession of the
pericentres, as well as the inherent dynamical consequences (Figs. 4.6 & 7.1). Libration
centres correspond to periodic orbits of the unaveraged problem that generalize the
equilibria of the averaged model. They are such that all the pericentres precess at the
same frequency in their vicinity, a result that holds true for every resonance chain of any
number of planets. We thus expect, for other resonance chains, the existence of similar
secular resonances, for example between ξ = λ1 − 4λ2 + 3λ3 and the ϖj for the chain
1 : 2 : 3.

We proved that tides are responsible for the system traveling towards the left of the
main branch in Fig. 4.2. In our model, we only considered the secular contributions due
to the resonance p : p + 1 (Eqs. (4.19) & (4.20)), which means that the main branch is
asymptotic to the horizontal axis and goes up to δ = −∞. However, Malhotra (2022)
showed than the main branch of the resonance p : p + 1 is connected to the branch 2
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(the other elliptic branch of Fig. 4.2) of the resonance p − 1 : p. Under the action of the
linearly stable region (Sect. 7.2.2) and the eccentricity damping stabilization (Sect. 7.3.3),
it is possible, with some choices of the parameters, that before the destruction of the
co-orbital configuration, tides allow the system to reach the branch 2 of the p : p : p + 1
resonance, while traveling from the main branch of the p + 1 : p + 1 : p + 2 resonance. We
did not investigate this scenario here.
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Chapter 8

Conclusions

8.1 Overview

In this thesis manuscript, we studied the dynamics of the co-orbital motion with a
particular focus on the secular perturbations due to tides and mean-motion resonance
with a third planet. As our work makes heavy use of the mathematical theory of celestial
mechanics, we recalled the main parts of this theory in Chap. 2. We rederived in Chap. 3
the important analytical results describing the point-mass 1 : 1 mean-motion resonance.
In particular, we studied there the circular and eccentric dynamics of the co-orbital pair,
which allowed us to define and explain notions that were essential later in the manuscript.
Chapter 3 also contains work original to this thesis and in particular, we showed how
perturbations due to general relativity cannot perturb the co-orbital motion in the same
way as tides do.

We considered once again the point-mass approximation in Chap. 4, where we
switched from a three-body problem to a four-body problem by adding a third planet
to the planetary system. We chose to put the third planet in a first order mean-motion
resonance with the co-orbital pair in order to study the dynamics of a co-orbital pair
perturbed by a resonance chain. As the third planet was exterior to the co-orbital pair,
we studied a resonance chain of the form p : p : p + 1, for any integer p. Chapter 4 showed
us that on certain aspects, the dynamics of the point-mass 1 : 1 resonance is similarly
to that of the p : p : p + 1 resonance chain, as simplifications allow the dynamics of the
librating angle λ1 − λ2 to be uncoupled from the rest of the dynamics. Nevertheless,
we also discovered specificities inherent the the chain p : p : p + 1, like the existence of
a secular 1 : 1 resonance between the precession frequency of the pericentres and the
libration frequency of the angle λ1 − λ2. The vicinity of this secular resonance can make
the trajectories of the system chaotic and we suspect that it exists for other resonance
chains.

In order to properly deal with tidal dissipation, we dedicated the entire Chap. 5 to
revise the main theory on tides. We redefined there important tidal quantities like the
Love numbers and the quality factor, and we studied the tidal models associated with
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different rheologies. In particular, we showed how the choice of the constant-∆t tidal
model allows the equations of motions to be derived from a pseudo-Hamiltonian, as if
tides were a conservative perturbation.

In Chaps. 6 & 7, we included tides in the analytical models built in Chaps. 3 &
4, respectively. In Chap. 6, we linearized the equations of motion in the vicinity of
the Lagrangian stable equilibria and an analysis of the real parts of the eigenvalues
showed us that they are made unstable by tides, whatever are the masses, radii and
tidal parameters of the co-orbitals. The instability is due to an exponential increase of
the libration amplitude of the angle λ1 − λ2, that eventually leads to close encounters
between the co-orbitals and the destruction of the system. The amplitude of the real
parts gave us informations on the timescale of instability and we were able to give an
analytical expression for the lifetime of the co-orbital pair in Eq. (6.40). We explain in
Sect. 6.2.3 how this work can be applied to an intelligent search for co-orbital pairs of
exoplanets. The analysis of the real part of the eigenvalues is not limited to the obtention
of the timescale of destruction but also shows how the eccentric proper modes Lagrange
and anti-Lagrange, discovered numerically by Giuppone et al. (2010) and analytically by
Robutel and Pousse (2013) are perturbed by tides. We reached the conclusion that the
most stable co-orbital pairs settle in the anti-Lagrange configuration. We showed how for
a system star−planet−planet, it is enough to consider tides raised on the co-orbitals only,
but we also considered in Sect. 6.4 tides raised on the central body to treat the case of a
system planet−satellite−satellite made up of small satellites.

In Chap. 7, we included tides in the p : p : p + 1 resonance chain. We linearized the
equations of motions in the vicinity of the equilibria of the system, and we showed that
close to the secular 1 : 1 resonance between the precession of the pericentres and the
libration of λ1−λ2, all the real part are negative and the equilibria are made asymptotically
stable by tides. For the chain 1 : 1 : 2, such secular resonance occurs near n3/n1 ≈ 2.07,
outside the Keplerian resonance, and in this region, the libration amplitude of λ1 − λ2,
instead of increasing exponentially, decreases exponentially. For this reason, the third
planet has the ability to greatly extend the lifetime of the co-orbital pair, although it
cannot save it from the destruction, as the system always leaves this region of asymptotic
stability. We thoroughly studied the influence of the mass of the third planet and we
showed that it generally increases the lifetime of the co-orbital pair, although in some few
cases, the third planet can lead to a premature destruction of the co-orbital pair.

8.2 Consequences
This work, although it shows the systematic destruction of the co-orbital motion, does
not entirely explain the absence of detection of co-orbital pair of exoplanets. Indeed,
the timescale of destruction is heavily dependent on the semimajor axis (Eq. (6.36)),
and co-orbital exoplanets located more than ∼ 0.08 AU away from their host star can
be considered immune to tides. As of September 2, 2022, 52.4 % of the 5159 detected
exoplanets had a semimajor axis larger than that1 and were undergoing from their host
star negligible tidal effects. It is thus likely that the challenge that a co-orbital detection
represents constitutes the main explanation to the absence of co-orbital exoplanet discovery.

1exoplanet.eu, considering a sample of 2841 exoplanets with known semimajor axis.

exoplanet.eu
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The disruption due to tidal dissipation constitutes another satisfying explanation. It
is also possible that the current formation models overestimate their formation, and
co-orbital exoplanets could be rarer than we believe. The results of this work hence cannot
be interpreted as a reason to abandon the search for co-orbital exoplanet, and further
endeavours will most likely lead to their detection.

In order to prove the unavoidable destruction of the co-orbital motion, this work
assumes a very simple tidal model. However, any tidal model leads to the loss of orbital
energy, and according to the results of Moeckel (2017) (last paragraph of Sect. 6.2.1),
considering a more subtle model could change the timescale of destruction, but it will not
save the co-orbital pair. Three more assumptions of our model, namely the expansion
in semi-major axis (Eqs. (3.9) & (3.11)), the expansion in eccentricities (Eq. (3.29)),
and the averaging process (Eq. (3.17)) were shown to be perfectly valid in Sect. 6.3.
The fifth and last approximation that we made is the planar state of the system. In
other words, we assumed that a small mutual inclination between the co-orbitals is not
pumped by tides like the libration amplitude of the angle λ1 − λ2. While we did not check
this hypothesis, Dobrovolskis and Lissauer (2022) showed that, at least in the restricted
case, the mutual inclination between the co-orbital bodies is damped by tides, which
validates our last assumption. In the absence of more planets in the planetary system,
it is therefore legitimate to consider that our work closes the question of tides raised on
co-orbital planets.

8.3 Perspectives

While the question of tides in the the 1 : 1 mean motion resonance is closed, the work
performed in this thesis only briefly explores the case of larger resonance chains. We
restricted ourselves to the chain p : p : p + 1, for which we showed that whereas the
co-orbital lifetime was generally enhanced by the third planet, the destruction was still
unavoidable. It is possible that other resonance chains could make the co-orbital motion
stable over arbitrarily large timescales, or even indefinitely. In particular, we did not
investigate the dynamics of the chain p : p + 1 : p + 1, for which the third planet is
innermost. It is not absurd to believe that it could have dynamical features completely
different from those of the chain p : p : p + 1, since such phenomenon has already been
observed, even for a two-planet system. Indeed, Beaugé et al. (2006) showed that in the
1 : 2 mean motion resonance, the second fundamental model of resonance of Henrard and
Lemaitre (1983) ceases to be valid at large eccentricities if the most massive planet is
innermost, while it stays valid if the most massive planet is outermost. Something similar
is not to be excluded between the chains p : p : p + 1 and p : p + 1 : p + 1, which is a
perspective worth exploring.

Another interesting direction to explore is the scenario mentioned in the last paragraph
of Sect. 7.4. As proven by Malhotra (2022), there exist continuous connections between
the branches of equilibria of consecutive first-order mean-motion resonances. It would be
interesting to build a secular model that takes into account effects of both the p : p : p + 1
and p + 1 : p + 1 : p + 2 resonance chains, to check if tides, through linearly stable regions
(Sect. 7.2.2) and eccentricity damping stabilization mechanisms (Sect. 7.3.3), could be
responsible for the system traveling from the resonance p+1 : p+1 : p+2 to the resonance
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p : p : p + 1.
The case of a system planet−satellite−satellite requires tides raised on the central planet

to be taken into account (Sect. 6.4.1). We studied these types of tides in Sect. 6.4, but we
limited ourselved to the obtention of analytical expressions of the timescales of evolution.
We did not check these analytical results with numerical simulations. Furthermore, for
such a system, other effects, like the oblateness of the central stars, or the presence of a non-
resonant, much more massive satellite (e.g. the system Saturn−Janus−Epimetheus−Titan)
need to be taken into account in order to build a reliable model. We plan to look in this
direction in the future.

Finally, the subject of resonance chains is very broad, and for four or more planets,
their dynamics are poorly understood, even in the point-mass case. Indeed, adding
planets to the chain quickly increases the number of degrees of freedom of the system,
and analytical models soon become untractable. Choosing a resonance chain that features
a co-orbital pair is a way to reduce the complexity of the model by means of uncoupling
simplifications like those explained in Sect. 4.3.1. Furthermore, the presence of a co-orbital
pair induces the existence of a fundamental frequency independent of the distance to
the Keplerian resonance, namely the libration frequency of the co-orbital angle. The
precession frequency of the pericentres, however, depends on the distance to the Keplerian
resonance. The presence of a co-orbital pair hence increases the chance of encountering a
1 : 1 secular resonance at a certain distance from the Keplerian resonance, like the one
that exists at n1/n3 ≈ 2.07 for the chain 1 : 1 : 2. As an example, the four-planet chain
p : p : p + 1 : p + 1 could be comparatively easier to study than other four-planet resonance
chains, while being very rich due to two 1 : 1 secular resonances, the first one between
λ1 − λ2 and the pericentres, and the second one between λ3 − λ4 and the pericentres.



Appendix A

Spherical harmonics and demonstration
of Eq. (5.8)

A.1 Framework
In this appendix, in order to have more compact notations, we denote∫

S
:=
∫ π

0

∫ 2π

0
sin θdφdθ, or similarly

∫
S′

:=
∫ π

0

∫ 2π

0
sin θ′dφ′dθ′. (A.1)

We use the spherical harmonics defined by

Ylm(θ, φ) = Plm(cos θ)eimφ, (A.2)

where the Plm are the associated Legendre polynomials, related to the Legendre polynomials
by

Plm(X) = (−1)m
(
1 − X2

)m/2 dm

dXm
Pl(X). (A.3)

The Legendre polynomials can be defined in many ways, for example as the coefficients of
the serie expansion (5.1), but their most compact definition is Rodrigues’ formula

Pl(X) = 1
2ll!

dl

dX l

(
X2 − 1

)l
. (A.4)

For two functions f(θ, φ) and g(θ, φ) on the sphere S, we define the dot product

f · g =
∫
S

f(θ, φ) ḡ(θ, φ), (A.5)

where the upper bar is the complex conjugated. With this dot product, the spherical
harmonics are orthogonal, that is

Ylm · Yl′m′ = c−1
lmδll′δmm′ , with clm = (2l + 1) (l − m)!

4π (l + m)! . (A.6)
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The spherical harmonics defined above form an orthogonal basis of the Hilbert space
L2

C(S) of square integrable functions from S to C. A given function f : S → C can be
decomposed in a unique1 way as a linear combination of the Ylm

f(θ, φ) =
+∞∑
l=0

l∑
m=−l

flmYlm(θ, φ), (A.7)

where the coefficients flm are given by the projection2 of f onto Ylm

flm = clm f · Ylm = clm

∫
S

f(θ, φ)Ȳlm(θ, φ). (A.8)

A.2 Laplace equation in spherical coordinates

The Laplace equation reads ∆ = 0. Using the spherical coordinates r = (r, θ, φ), where θ
and φ are the colatitude and longitude, the Laplace operator reads

∆ = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2 . (A.9)

Assuming the separation of variables, that is

F (r, θ, φ) = f(r)g(θ)h(φ), (A.10)

the equation ∆F = 0 yields

f(r) = rβ, g(θ) = Plm(cos θ), h(φ) = e±imφ, (A.11)

where l is a positive integer, β is either l or −l − 1 and −l ≤ m ≤ l.

A.3 Demonstration of Eq. (5.8)

Here we show Eq. (5.8) from Eqs. (5.6) & (5.7). As in Chap. 5, σ stands for (θ, φ)
and S denotes the sphere of radius R centered on O, the barycentre of the body B. The
Love number k(R, σ, σ′, t − t′), appearing in Eq. (5.6), is decomposed over the spherical
harmonics

k(R, σ, σ′, t − t′) =
+∞∑
l=0

l∑
m=−l

km
l (R, σ′, t − t′)Ylm(σ)

=
+∞∑
l=0

l∑
m=−l

+∞∑
l′=0

l′∑
m′=−l′

kmm′

ll′ (R, t − t′)Ȳl′m′(σ′)
Ylm(σ). (A.12)

1Ȳlm can be written in Eq. (A.7) instead of Ylm, in which case flm = clm f · Ȳlm.
2The coefficient clm is due to the fact that the Ylm do not form an orthonormal basis of L2

C(S), but
rather an orthogonal basis.
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This allows Eq. (5.6) to be rewritten as

V (R, σ, t) =
∫ t

−∞

∫
S′

+∞∑
l=0

l∑
m=−l

+∞∑
l′=0

l′∑
m′=−l′

kmm′

ll′ (R, t − t′)Ȳl′m′(σ′)
Ylm(σ)W (R, σ′, t′)dt′

=
+∞∑
l=0

l∑
m=−l

∫ t

−∞

∫
S′

+∞∑
l′=0

l′∑
m′=−l′

kmm′

ll′ (R, t − t′)Ȳl′m′(σ′)W (R, σ′, t′)dt′ Ylm(σ). (A.13)

A term-wise identification between Eq. (5.7) and Eq. (A.13) yields, by uniqueness of the
decomposition

Vlm(R, t) =
∫ t

−∞

∫
S′

+∞∑
l′=0

l′∑
m′=−l′

kmm′

ll′ (R, t − t′)Ȳl′m′(σ′)W (R, σ′, t′)dt′. (A.14)

If B is isotropic at rest, the coefficients kmm′
ll′ do not depend on the reference frame attached

to B, and there exist functions kl(R, t) such that (see Boué et al., 2019)

kmm′

ll′ (R, t − t′) = δll′δmm′kl(R, t − t′). (A.15)

Equation (A.14) hence reduces to

Vlm(R, t) =
∫ t

−∞
kl(R, t − t′)

∫
S′

Ȳlm(σ′)W (R, σ′, t′)dt′. (A.16)

Substituting Eq. (A.8) into the last equation and defining klm(R, t) = c−1
lmkl(R, t) yields

Vlm(R, t) =
∫ t

−∞
klm(R, t − t′)Wlm(R, t′)dt′, (A.17)

which is Eq. (5.8).
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Appendix B

Coefficients of H(4), U (j)
t , H(1)

j,3 and H(2)
j,3

B.1 Coefficients of H(4)

The coefficients appearing in the Hamiltonian H(4) defined in Eq. (3.29) are given by1

Dh = 7
16 cos ξ + 1

4∆9

(
−3951

32 + 115 cos ξ + 293
8 cos 2ξ − 27 cos 3ξ − 37

32 cos 4ξ
)

,

Gh = cos ξ + ∆−9
(

−4491
32 + 139 cos ξ + 233

8 cos 2ξ − 27 cos 3ξ − 25
32 cos 4ξ

)
,

Eh = 1
32
(
e−iξ + 81e−3iξ

)
+ e−6iξ

32∆9 PE(eiξ),

Fh = −7
4e2iξ + e−3iξ

4∆9 PF (eiξ),

(B.1)

where PE and PF are polynomials given by

PE(X)=−9
8 +15X− 349

2 X2+171X3+ 2889
4 X4−1571X5+ 2007

2 X6−87X7− 625
8 X8,

PF (X)= 207
32 + 303

8 X− 577
4 X2+ 603

8 X3+ 2511
16 X4− 1475

8 X5+45X6+ 57
8 X7− 5

32X8.

B.2 Coefficients of H(1)
j,3 and H(2)

j,3

We give here the expressions of the coefficients appearing in Eqs. (4.19) & (4.20) of Sect.
4.1.3. They depend on the Laplace coefficients bm

n/2 (α) (defined by Eq. (2.75)), and to
improve readability, we denote bm

n = bm
n/2 (α), where α = ā/a3,0. For the resonance 1 : 1 : 2

1Recall that ∆ =
√

2 − 2 cos ξ.
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t , H(1)

j,3 and H(2)
j,3

we have2

C
(1)
1,1 = −αb1

3

(7
6 + 2

3α−2 + 5
3α2

)
+ b0

3

(
1 + 5

2α2
)

≈ 1.1904937,

C
(1)
1,2 = b1

3

(
1 + 3

2α2
)

− 5
2αb0

3 + 1√
α

≈ −0.4283898,
(B.2)

for the first degree in eccentricity and

C
(2)
1,1 = αb1

3

(263
168 + 16

35α−4 + 89
105α−2 + 341

105α2 + 184
35 α4

)
− b0

3

(71
70 + 24

35α−2 + 67
35α2 + 276

35 α4
)

≈ −1.6957266,

C
(2)
1,2 = αb1

3

(65
24 + 4

3α−2 + 13
3 α2

)
− b0

3

(
2 + 13

2 α2
)

≈ −3.5937942,

C
(2)
1,3 = −b1

3

(29
10 + 8

5α−2 + 59
10α2 + 48

5 α4
)

+ αb0
3

(69
20 + 12

5 α−2 + 72
5 α2

)
≈ 4.9668470,

C
(2)
1,4 = −1

8αb1
3 ≈ −0.3876274,

C
(2)
1,5 = 1

2b1
3

(
1 + α2

)
− 3

4αb0
3 ≈ 0.5756950,

(B.3)

for the second degree.

B.3 Coefficients of U (j)
t

We give here the the complete expression of the fourth order in eccentricity of the tidal
perturbation U (j)

t to the Hamiltonian, introduced by Eq. (6.8). The term D
(j)
4 appearing

in this equation reads

D
(j)
4 = D

(j)
t

(
R−2

j X2
j X̄2

j + R⋆−2
j X⋆2

j X̄⋆2
j

)
+
(
RjR⋆

j

)−1 (
E

(j)
t X2

j X̄⋆2
j + Ē

(j)
t X⋆2

j X̄2
j

)
+
(
RjR⋆

j

)−1
G

(j)
t XjX

⋆
j X̄jX̄

⋆
j + R−3/2

j R⋆−1/2
j

(
F

(j)
t XjX

⋆
j X̄2

j + F̄
(j)
t X2

j X̄jX̄
⋆
j

)
+ R−1/2

j R⋆−3/2
j

(
F

(j)
t X⋆2

j X̄jX̄
⋆
j + F̄

(j)
t XjX

⋆
j X̄⋆2

j

)
,

(B.4)

where

D
(j)
t = 3

8 + 69
64 cos [2 (∆λj − ∆θj)] ,

G
(j)
t = 9

16 + 75
16 cos [2 (∆λj − ∆θj)] ,

E
(j)
t = 81

64e−2i∆λj + 867
32 e−2i(2∆λj−∆θj),

F
(j)
t = 9

16ei∆λj − 3
128e−i(∆λj−2∆θj) − 1365

128 ei(3∆λj−2∆θj),

(B.5)

with ∆λj = λj − λ⋆
j and ∆θj = θj − θ⋆

j .

2Note that these analytical expressions are only valid for p = 1, that is, for the resonance chain 1 : 1 : 2.
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Matrices and differential systems

C.1 Simplified differential system
We give here the expression of the differential system used to obtain the analytical results
of Sect. 4.3.1. It is derived from Eq. (2.18) with the Hamiltonian HK + H(0) + H(1),
that is, the Hamiltonian (4.21) truncated at first order in eccentricity, after the degree of
freedom (L; ξ) have been uncoupled from the degrees of freedom (Dj; σj), as explained in
Sect. 4.3.1. We have

Ḋ1 = −
C

(1)
p,1

√
2C1D1m1n3,0

m0C3
sin

(
p

π

3 − σ1

)
,

Ḋ2 = −
C

(1)
p,1

√
2C2D2m2n3,0

m0C3
sin σ2,

Ḋ3 = −
√

2C3D3C
(1)
p,2n3,0

m0C3

(
m1 sin

(
p

π

3 − σ3

)
− m2 sin σ3

)
,

∆̇L = η
m2 sin ξ

m0C1

(
1 − 1

∆3

)
,

σ̇1 = ∂HK

∂∆Υ +
C1C

(1)
p,1m1n3,0

C3
√

2C1D1m0
cos

(
p

π

3 − σ1

)
,

σ̇2 = ∂HK

∂∆Υ +
C2C

(1)
p,1m2n3,0

C3
√

2C2D2m0
cos σ2,

σ̇3 = ∂HK

∂∆Υ +
C

(1)
p,2n3,0

m0
√

2C3D3

(
m1 cos

(
p

π

3 − σ3

)
+ m2 cos σ3

)
,

ξ̇ = −3η (C1 + C2) ∆L,

(C.1)

where ∆L = L − L⋆ and1

∂HK

∂∆Υ = −3η
{(

p2C2 + p (p + 1) C3
)

∆Υ + pC2∆L⋆
}

. (C.2)
1∆L⋆ is defined by Eq. (4.26).
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C.2 Expression of the matrix Q6

We give here the matrix Q6 that appears in Eq. (4.37). We denote

rj =
√

2Dj, c3 = cos σ3, s3 = sin σ3, s = sin pπ

3 ,

c = cos pπ

3 , I = 3ηp (C3 + p (C2 + C3)) ,
(C.3)

and obtain Q6 =

Icsr1
2 Isr1r2 c3Isr1r3 Is2r1

2 − ν3 0 Is3sr1r3
0 0 0 0 −ν3 0

Is3cr1r3 Is3r2r3 c3Is3r3
2 Is3sr1r3 0 Is3

2r3
2 − ν3

−Ic2r1
2 + ν3 −Icr1r2 −c3Icr1r3 −Icsr1

2 0 −Is3cr1r3
−Icr1r2 −Ir2

2 + ν3 −c3Ir2r3 −Isr1r2 0 −Is3r2r3
−c3Icr1r3 −c3Ir2r3 −c3

2Ir3
2 + ν3 −c3Isr1r3 0 −c3Is3r3

2


. (C.4)

C.3 Expression of the matrix Q0 + Q1

We give here the complete expression of the matrix Q0 + Q1 of the linearized system
(6.24). We have

Q0 =
(

Z0 05×2
02×5 M0

)
and Q1 =

(
Z1 05×2

02×5 M1

)
, (C.5)

where

M0 = 27
8 iη

 m2
m0

−m2
m0

eiπ/3

−m1
m0

e−iπ/3 m1
m0

 , (C.6)

M1 = −21
2 η diag

{
q1

Q1

m0

m1

(
1 − 5

7iQ1

)
,

q2

Q2

m0

m2

(
1 − 5

7iQ2

)}
, (C.7)

Z0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −3γη 0
0 0 9ιηγ−1/4 0 0
0 0 0 0 0

 , (C.8)

Z1 =


−a1 0 0 3γ−1δ−1a1 3γ−1a1

0 −a2 0 −3γδa2 3γ−1a2
0 0 0 −γ [δc2 + (1 − δ) c1] γ−1 (c2 − c1)

− (1 − δ) b1 δb2 0 3γ
[
δ2b2 + (1 − δ)2 b1

]
3γ−1 [(1 − δ) b1 − δb2]

−b1 −b2 0 3γ−1δ−1b1 − 3γδb2 3γ−1 (b1 + b2)

 , (C.9)

with

δ = m1

m1 + m2
, γ = m1 + m2

m
, ι = m1 + m2

m0

aj = 3η

αj

qj

Qj

ϙ
−2
j

m0

mj

, bj = 3η
qj

Qj

m0

m
, cj = 78ηqj

m0

mj

.
(C.10)



C.4. Complete model for tidal interactions 121

Near L4,5, the eigenvectors of M0 + M1, computed using results from Sect. 2.4.2, reveal
that the Lagrange configuration corresponds to

ϖ1 − ϖ2 = π

3 + 28
9

m2
0 (m1q2/Q2 + m2q1/Q1)

m1m2 (m1 + m2)
,

e1

e2
= 1 + 20

9
m2

0 (q2m1 − q1m2)
m1m2 (m1 + m2)

,

(C.11)

while the anti-Lagrange configuration complies with

ϖ1 − ϖ2 = 4π

3 − 28
9

m2
0 (m1q2/Q2 + m2q1/Q1)

m1m2 (m1 + m2)
,

e1

e2
= m2

m1

(
1 − 20

9
m2

0 (q2m1 − q1m2)
m1m2 (m1 + m2)

)
.

(C.12)

These last two equations are a perturbation due to tides of Eqs (3.44) & (3.45).

C.4 Complete model for tidal interactions
The complete equations of motion governing the tidal evolution of a planar (N + 1)-body
system in a heliocentric reference frame, using a linear constant time-lag tidal model, are
given, for 1 ≤ j ≤ N , by (Mignard, 1979)

r̈j = −µj

r3
j

rj +
∑
k ̸=j

Gmk

(
rk − rj

|rk − rj|3
− rk

r3
k

)
+

f j

βj

+
∑
k ̸=j

fk

m0
,

θ̈j = −3∆tj

κ
(j)
2 Gm2

0R
3
j

αjmjr8
j

[
θ̇ r2

j − (rj × ṙj) · k
]

,

(C.13)

where rj is the heliocentric position vector, θj the rotation angle of the planet j, k is the
unit vector normal to the orbital plane, and f j is the force arising from the tidal potential
energy created by the deformation of planet j (Eq. (6.3))

f j = −3
κ

(j)
2 Gm2

0R
5
j

r8
j

rj − 3
κ

(j)
2 Gm2

0R
5
j

r10
j

∆tj

[
2 (rj · ṙj) rj + r2

j

(
θ̇ rj × k + ṙj

)]
. (C.14)
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MOTS CLÉS

Mécanique Céleste ◦ Marées ◦ Problème des Trois & Quatre Corps ◦ Résonance ◦ Co-orbital

RÉSUMÉ

Les systèmes planétaires peuvent adopter des configurations remarquables. L’une d’elles, dite co-orbitale, se
produit lorsque deux planètes ont la même période orbitale autour de leur étoile, c’est à dire, quand elles sont
en résonance de moyen mouvement 1 : 1. Même au sein de la résonance co-orbitale, de nombreuses trajectoires
sont possibles. Les plus simples sont connues depuis le 18ème siècle, comme deux corps co-orbitaux sur des
orbites planes et circulaires formant avec leur étoile un triangle équilatéral tournant. Cependant, certaines
configurations plus subtiles n’ont été découvertes que récemment. Dans le cas de deux points matériels à faibles
excentricités et inclinaisons, les aspects analytiques de la dynamique sont bien compris. Cependant, de grandes
excentricités ou inclinaisons sont responsables de changements topologiques dans l’espace des phases, tandis
que des corps étendus peuvent engendrer la dissipation de l’énergie mécanique, et la dynamique dans ces cas a
encore des zones d’ombre.
Aucune des huit planètes du système Solaire ne co-orbitent ensemble le Soleil, bien que des corps co-orbitaux
existent dans le système Solaire, soit entre deux objets mineurs (orbitant une planète), soit entre une planète et
un objet mineur (orbitant le Soleil). Cette absence de planètes co-orbitales n’est a priori pas la norme dans
les systèmes exoplanétaires, puisque les modèles de formation prédisent leur existence. Pourtant, en dépit de
milliers de détections d’exoplanètes, aucune paire de planètes co-orbitales n’a été détectée à ce jour. Bien que
cela puisse s’expliquer par des biais observationnels, nous montrons dans ce manuscrit que les forces de marées
sont responsables de la destruction des paires de planètes co-orbitales. Nous construisons un modèle analytique
de marées du système plan étoile−planète−planète, basé sur une extension, avec dissipation de marées, du
formalisme Hamiltonien. Le modèle fournit une expression analytique précise de la durée de vie de la paire,
dépendant des paramètres, et qui permet de prédire quelles exoplanètes déjà découvertes pourraient avoir un
compagnon co-orbital non détecté.
Les modèles de formation prédisent aussi qu’un nombre important de planètes co-orbitales sont formées au sein
d’une chaîne de résonance. Ainsi, nous étendons l’étude précédente au cas où la paire est au sein d’une chaîne
de résonance. Plus précisement, nous construisons un modèle Hamiltonien de la chaîne de résonance p : p : p + 1
où la paire de co-orbitaux est en résonance de moyen mouvement du premier ordre p : p + 1 avec une troisième
planète externe, p étant un petit entier. Après comparaison des familles d’équilibres du modèle avec les familles
d’orbites quasipériodiques correspondantes dans le système complet, nous ajoutons la dissipation de marées au
modèle à l’aide d’un formalisme pseudo-Hamiltonien. Nous montrons que cette chaîne de résonance met en
scène une résonance séculaire 1 : 1 entre la libration de l’angle co-orbital et la précession des péricentres, et
en analysant les valeurs propres du système différentiel linéarisé au voisinage des familles d’équilibres, nous
montrons comment les marées stabilisent le système aux alentours de cette résonance séculaire, rendant la paire
de planètes co-orbitales bien plus stable quand elle est dans la chaîne de résonance p : p : p + 1.

ABSTRACT

Planetary systems can adopt remarkable configurations. One of them, said co-orbital, occurs when two planets
share the same orbital period around their star, that is, when they are in a 1 : 1 mean motion resonance. Even
within the co-orbital motion, many trajectories are possible. The simplest ones are known since the 18th century,
like two co-orbital bodies on planar and circular orbits forming with the star a rotating equilateral triangle.
However, some more subtle configurations were not discovered until recently. In the case of point mass bodies
with small eccentricities and inclinations, the analytical features of the dynamics are well understood. However,
large eccentricities and inclinations are responsible for topological changes in the phase space, while extended
bodies can lead to dissipation of the orbital energy, and the dynamics in these cases still has grey areas.
None of the eight planets of the Solar system are in co-orbital motion together, although co-orbital bodies
exist in the Solar system, either between two minor objects (orbiting a planet) or between a planet and a
minor object (orbiting the Sun). This absence of planet−planet co-orbital motion should not be the norm
in exoplanetary systems, as the formation models predict their existence. Nevertheless, despite thousands
of exoplanets detection, no pair of co-orbital planets has been detected so far. While this may be in part
explained by detection bias, we show in this manuscript that tidal effects are responsible for the disruption of
co-orbital pairs of planets. We build an analytical tidal model of the planar system star-planet-planet, based on
an extension of the point-mass Hamiltonian formalism with tidal dissipation. The model provides an accurate
analytical expression for the lifetime of the pair depending on the parameters, allowing to predict which already
discovered exoplanets might have an undetected co-orbital companion.
Formation models also predict that a significant number of co-orbital planets are formed within a resonance
chain. Therefore, we extend the previous study to the case where the pair is within a resonance chain. More
precisely, we build a Hamiltonian model of the resonance chain p : p : p + 1 where the co-orbital pair is in a
first-order mean motion resonance p : p + 1 with an outermost third planet, p being a small integer. After
comparing the families of equilibria of the model with the associated families of periodic orbits of the complete
system, we add tidal dissipation to the model using a pseudo-Hamiltonian formalism. We show that this
resonance chain features a 1 : 1 secular resonance between the libration of the co-orbital angle and the precession
of the pericentres, and by analizing the eigenvalues of the linearized system in the vicinity of the families of
equilibria, we show how tides stabilize the system around this secular resonance, making co-orbital pairs of
exoplanets much more stable while inside the p : p : p + 1 resonance chain.
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