Dynamics of metronomes in a row on a moving plate Jérémy COUTURIER

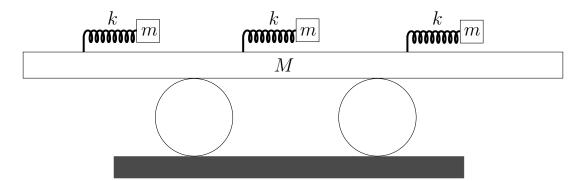
February 13, 2023

Contents

1	The problem	2
2	Dynamics of the system	2
	2.1 Conservative case	2
	2.2 Dissipative case	3

1 The problem

We consider a row of N harmonic oscillators attached to a freely moving plate of mass M. All the oscillators are identical with mass m and rigidity k. We denote $\omega_0 = \sqrt{k/m}$ their proper frequency.



2 Dynamics of the system

2.1 Conservative case

If x_j is the departure of the j^{th} oscillators from its equilibrium position with respect to the plate, and x is the position of the plate, then the kinetic energy of the system reads

$$\mathcal{T} = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\sum_{j=1}^{N} (\dot{x} + \dot{x}_j)^2,$$
 (1)

while the potential energy is

$$\mathcal{U} = \frac{1}{2}k \sum_{j=1}^{N} x_j^2.$$
 (2)

We can write the Lagrangian of the system as $\tilde{\mathcal{L}} = (\mathcal{T} - \mathcal{U})/m$ to end up with

$$\tilde{\mathcal{L}} = \frac{1}{2} \frac{M}{m} \dot{x}^2 + \frac{1}{2} \sum_{j=1}^{N} (\dot{x} + \dot{x}_j)^2 - \frac{1}{2} \omega_0^2 \sum_{j=1}^{N} x_j^2.$$
(3)

We introduce the dimensionless time $t^* = \omega_0 t$ and for the rest of Sect. 2.1, the upper dot denotes d/dt^* . Redefining the Lagrangian as $\mathcal{L} = \tilde{\mathcal{L}}/\omega_0^2$, we have the final expression

$$\mathcal{L} = \frac{1}{2} \frac{M}{m} \dot{x}^2 + \frac{1}{2} \sum_{j=1}^{N} (\dot{x} + \dot{x}_j)^2 - \frac{1}{2} \sum_{j=1}^{N} x_j^2.$$
 (4)

The momenta associated with the coordinates x, x_1, \dots, x_N are given by

$$X = \frac{\partial L}{\partial \dot{x}} = \frac{M}{m} \dot{x} + \sum_{i=1}^{N} (\dot{x} + \dot{x}_i) \text{ and}$$

$$X_j = \frac{\partial L}{\partial \dot{x}_j} = \dot{x} + \dot{x}_j.$$
(5)

The Hamiltonian of the system is defined by $\mathcal{H} = (X, X_1, \dots, X_n)^t (\dot{x}, \dot{x}_1, \dots, \dot{x}_n) - \mathcal{L}$. It does not depend on x, which means that X is a first integral, corresponding to the total angular momentum of the system. It can be assumed without loss of generality that X is zero, and in that case, the Hamiltonian reads

$$\mathcal{H} = \frac{1}{2} \frac{m}{M} \left(\sum_{j=1}^{N} X_j \right)^2 + \frac{1}{2} \sum_{j=1}^{N} \left(X_j^2 + x_j^2 \right). \tag{6}$$

The second term corresponds to a sum of N uncoupled oscillators while the first term contains the coupling. Intuitively enough, if M is much larger than m, then the coupling term vanishes and the oscillators do not interact with each other.

The equations of motions are given by

$$\dot{x}_j = \frac{\partial \mathcal{H}}{\partial X_j} \quad \text{and} \quad \dot{X}_j = -\frac{\partial \mathcal{H}}{\partial x_j}$$
 (7)

and are linear. Writing $\mathfrak{X} = {}^{t}(X_1, \cdots, X_n, x_1, \cdots, x_n)$, we obtain

$$\frac{d\mathfrak{X}}{dt} = \omega_0 \begin{pmatrix} 0_N & -\mathbb{I}_N \\ \mathbb{I}_N + \frac{m}{M} \mathbb{I}_N & 0_N \end{pmatrix} \mathfrak{X} = \mathcal{M}\mathfrak{X}, \tag{8}$$

where $\mathbb{1}_N$ is the $N \times N$ matrix full of 1. The characteristic polynomial of \mathcal{M} reads

$$\det\left(\mathbb{AI} - \mathcal{M}\right) = \left(\mathbb{A}^2 + \omega_0^2\right)^{N-1} \left(\mathbb{A}^2 + \Omega_0^2\right), \quad \text{where } \Omega_0^2 = \frac{k}{m} + N\frac{k}{M}, \tag{9}$$

and the eigenvalues of the system are $\pm i\omega_0$ of multiplicity N-1 and $\pm i\Omega_0$ of multiplicity 1. Without dissipation, the oscillators all have a quasiperiodic motion with frequencies ω_0 and Ω_0 .

2.2 Dissipative case

Dissipation can be taken into account in the model by modifying the Euler-Lagrange equation. We write $\mathbf{q} = {}^t(x, x_1, \dots, x_n)$ and we introduce a dissipation function $\tilde{\mathcal{D}}$ such that the work of the dissipative forces takes the expression

$$W = -\frac{\partial \tilde{\mathcal{D}}}{\partial \dot{q}} \cdot \dot{q}. \tag{10}$$

A simple model that disregards air drag and assumes that the dissipation forces are proportionnal to the speed yields to the introduction of two timescales τ_1 and τ_2 such that

$$\tilde{\mathcal{D}} = \frac{1}{2} \frac{M}{\tau_1} \dot{x}^2 + \frac{1}{2} \frac{m}{\tau_2} \sum_{j=1}^{N} \dot{x}_j^2.$$
 (11)

The equations of motion with dissipation are given by

$$\frac{\partial \tilde{\mathcal{L}}}{\partial \boldsymbol{q}} - \frac{d}{dt} \frac{\partial \tilde{\mathcal{L}}}{\partial \dot{\boldsymbol{q}}} = \frac{\partial \tilde{\mathcal{D}}}{\partial \dot{\boldsymbol{q}}},\tag{12}$$

where $\tilde{\mathcal{L}} = \mathcal{T} - \mathcal{U}$ and \mathcal{T} and \mathcal{U} are given by Eqs. (1) & (2). We again introduce the dimensionless time $t^* = \omega_0 t$ and redefine the upper dot as d/dt^* . We redefine the Lagrangian and dissipative function by $\mathcal{L} = \tilde{\mathcal{L}}/(m\omega_0^2)$ and $\mathcal{D} = \tilde{\mathcal{D}}/(m\omega_0^2)$. The Lagrangian then takes the expression given by Eq. (4) and

$$\mathcal{D} = \frac{1}{2\tau_1} \frac{M}{m} \dot{x}^2 + \frac{1}{2\tau_2} \sum_{j=1}^{N} \dot{x}_j^2.$$
 (13)