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1 The problem

We consider a row of N harmonic oscillators attached to a freely moving plate of mass M.
All the oscillators are identical with mass m and rigidity k. We denote wy = \/k/m their
proper frequency.
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2 Dynamics of the system

2.1 Conservative case

If z; is the departure of the j* oscillators from its equilibrium position with respect to the
plate, and x is the position of the plate, then the kinetic energy of the system reads
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while the potential energy is
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We can write the Lagrangian of the system as £ = (T —U) /m to end up with
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We introduce the dimensionless time t* = wyt and for the rest of Sect. , the upper dot

denotes d/dt*. Redefining the Lagrangian as £ = £/w?, we have the final expression
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The momenta associated with the coordinates x,zq, -+, xx are given by
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2.2 Dissipative case 3

The Hamiltonian of the system is defined by H = (X, Xy, -+, X,,) " (2,21, -+ , &) — L. Tt
does not depend on z, which means that X is a first integral, corresponding to the total
angular momentum of the system. It can be assumed without loss of generality that X is
zero, and in that case, the Hamiltonian reads
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The second term corresponds to a sum of N uncoupled oscillators while the first term
contains the coupling. Intuitively enough, if M is much larger than m, then the coupling
term vanishes and the oscillators do not interact with each other.

The equations of motions are given by
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and are linear. Writing X = *(Xy,--- , X,,,x1,- -+ ,x,), we obtain
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where 1y is the N x N matrix full of 1. The characteristic polynomial of M reads
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and the eigenvalues of the system are +iw, of multiplicity N — 1 and i€ of multiplicity 1.
Without dissipation, the oscillators all have a quasiperiodic motion with frequencies wy and
Q.

2.2 Dissipative case

Dissipation can be taken into account in the model by modifying the Euler-Lagrange equa-
tion. We write ¢ = *(z, 21, -+ ,2,) and we introduce a dissipation function D such that
the work of the dissipative forces takes the expression

W=-""1q. (10)

A simple model that disregards air drag and assumes that the dissipation forces are propor-
tionnal to the speed yields to the introduction of two timescales 71 and 75 such that
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2.2 Dissipative case 4

where £ = T — U and T and U are given by Egs. (1) & (2). We again introduce the
dimensionless time t* = wyt and redefine the upper dot as d/dt*. We redefine the Lagrangian
and dissipative function by £ = £/ (mw?) and D = D/ (mw?). The Lagrangian then takes
the expression given by Eq. (1) and
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