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1 The problem
We consider a row of N harmonic oscillators attached to a freely moving plate of mass M .
All the oscillators are identical with mass m and rigidity k. We denote ω0 =

√
k/m their

proper frequency.
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2 Dynamics of the system

2.1 Conservative case
If xj is the departure of the jth oscillators from its equilibrium position with respect to the
plate, and x is the position of the plate, then the kinetic energy of the system reads

T = 1
2

Mẋ2 + 1
2

m
N∑

j=1
(ẋ + ẋj)2 , (1)

while the potential energy is

U = 1
2

k
N∑

j=1
x2

j . (2)

We can write the Lagrangian of the system as L̃ = (T − U) /m to end up with

L̃ = 1
2

M

m
ẋ2 + 1

2

N∑
j=1

(ẋ + ẋj)2 − 1
2

ω2
0

N∑
j=1

x2
j . (3)

We introduce the dimensionless time t⋆ = ω0t and for the rest of Sect. 2.1, the upper dot
denotes d/dt⋆. Redefining the Lagrangian as L = L̃/ω2

0, we have the final expression

L = 1
2

M

m
ẋ2 + 1

2

N∑
j=1

(ẋ + ẋj)2 − 1
2

N∑
j=1

x2
j . (4)

The momenta associated with the coordinates x, x1, · · · , xN are given by

X = ∂L

∂ẋ
= M

m
ẋ +

N∑
i=1

(ẋ + ẋi) and

Xj = ∂L

∂ẋj

= ẋ + ẋj.

(5)



2.2 Dissipative case 3

The Hamiltonian of the system is defined by H = (X, X1, · · · , Xn) t (ẋ, ẋ1, · · · , ẋn) − L. It
does not depend on x, which means that X is a first integral, corresponding to the total
angular momentum of the system. It can be assumed without loss of generality that X is
zero, and in that case, the Hamiltonian reads

H = 1
2

m

M

 N∑
j=1

Xj

2

+ 1
2

N∑
j=1

(
X2

j + x2
j

)
. (6)

The second term corresponds to a sum of N uncoupled oscillators while the first term
contains the coupling. Intuitively enough, if M is much larger than m, then the coupling
term vanishes and the oscillators do not interact with each other.

The equations of motions are given by

ẋj = ∂H
∂Xj

and Ẋj = −∂H
∂xj

(7)

and are linear. Writing X = t (X1, · · · , Xn, x1, · · · , xn), we obtain

dX

dt
= ω0

 0N −IN

IN + m

M
1N 0N

X = MX, (8)

where 1N is the N × N matrix full of 1. The characteristic polynomial of M reads

det (ϡI − M) =
(
ϡ2 + ω2

0

)N−1 (
ϡ2 + Ω2

0

)
, where Ω2

0 = k

m
+ N

k

M
, (9)

and the eigenvalues of the system are ±iω0 of multiplicity N − 1 and ±iΩ0 of multiplicity 1.
Without dissipation, the oscillators all have a quasiperiodic motion with frequencies ω0 and
Ω0.

2.2 Dissipative case
Dissipation can be taken into account in the model by modifying the Euler-Lagrange equa-
tion. We write q = t (x, x1, · · · , xn) and we introduce a dissipation function D̃ such that
the work of the dissipative forces takes the expression

W = −∂D̃
∂q̇

· q̇. (10)

A simple model that disregards air drag and assumes that the dissipation forces are propor-
tionnal to the speed yields to the introduction of two timescales τ1 and τ2 such that

D̃ = 1
2

M

τ1
ẋ2 + 1

2
m

τ2

N∑
j=1

ẋ2
j . (11)

The equations of motion with dissipation are given by

∂L̃
∂q

− d

dt

∂L̃
∂q̇

= ∂D̃
∂q̇

, (12)



2.2 Dissipative case 4

where L̃ = T − U and T and U are given by Eqs. (1) & (2). We again introduce the
dimensionless time t⋆ = ω0t and redefine the upper dot as d/dt⋆. We redefine the Lagrangian
and dissipative function by L = L̃/ (mω2

0) and D = D̃/ (mω2
0). The Lagrangian then takes

the expression given by Eq. (4) and

D = 1
2τ1

M

m
ẋ2 + 1

2τ2

N∑
j=1

ẋ2
j . (13)
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